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ABSTRACT 

Oxidation is the primary cause of long-term aging in asphalt pavements. As a 

pavement oxidizes, it stiffens and can eventually crack. The use of an antioxidant as a 

performance enhancer in an asphalt binder could delay aging, thus increasing the life of an 

asphalt pavement. Lignin is a highly-available, well-studied antioxidant. A wet-mill ethanol 

plant produces several co-products, some of which contain lignin. The use of lignin from 

ethanol production could provide benefit to asphalt pavements while also giving more value 

to the co-products. Three lignin-containing co-products were each combined with four 

asphalt binders separately in varying amounts to determine the optimum amount of co-

product that would provide the greatest benefit to the asphalt binders. The asphalt binder/co-

product blends were evaluated according to Superpave specifications and performance 

graded on a continuous scale. The data indicates a stiffening effect of the binder caused by 

the addition of the co-products. The more co-product added, the greater the stiffening. Binder 

stiffening benefits the high temperature properties, while the low temperature binder 

properties are negatively affected. However, the low temperature stiffening effects are small, 

and in many cases not significant. The co-products have an overall effect of widening the 

temperature range of the binders. This suggests some antioxidant activity between the binder 

and the lignin.  Testing with a fourth co-product with no lignin supports the idea that lignin 

acts as an antioxidant.  The samples with no lignin aged significantly more than the samples 

with lignin.  Infrared spectrometry also supports the idea that lignin acts as an antioxidant by 

decreases in some oxidative aging products.   
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1. INTRODUCTION 

1.1 Background 

 The use of performance enhancers in asphalt binder is not a new concept.  Many 

materials exist and are in wide use which improve the properties of asphalt binder.  

Thermoplastic copolymers improve asphalt binder by increasing high and low temperature 

rheological properties (Lucena et al. 2004). Chemicals such as hydrated lime and 

polyphosphoric acid also improve various properties of asphalt binder (Little and Peterson 

2005, Edwards et al. 2006).  However, there are no performance enhancers in widespread use 

which slow the oxidative aging of asphalt binder by acting as an antioxidant.  Slowing 

oxidative aging of asphalt binder would have great potential benefit for hot-mix asphalt 

pavements.  As a pavement ages, it stiffens and becomes more susceptible to failure from 

load and thermal stresses (Roberts et al. 1996, Liu et al. 1998).  Slowing oxidative aging 

would increase the service life of a pavement.  The public could benefit by saving money and 

having less construction inconveniences.  However, an antioxidant for use in asphalt 

pavements would need to be available in large amounts and be cost effective.   

Antioxidants have been studied in asphalt pavements, but none have proven to be 

practical for incorporation into the asphalt industry. Lignin, a known antioxidant, is the 

second most available biological polymer on earth (Dizhbite et al. 2004).  Lignin is found in 

many sources such as timber, grass, and corn (Glasser and Sarkanen 1989).  A kernel of corn 

contains a relatively small amount of lignin in the outer coating (Gulati et al. 1997). Corn has 

many uses, including its use in the growing ethanol industry.  Currently, approximately 1.8 

billion bushels of corn are processed annually for the production of ethanol, which uses 17 

percent of the United State’s corn crop (Iowa Corn 2006).  Present technology allows only 
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the starch to be used to make ethanol, while over twenty five percent of the kernels are left 

for other uses (Bothast and Schlicher 2005).   The main use of most ethanol co-products is 

livestock feed.  However, with ethanol production forecasted to be about ten billion gallons 

in 2015 (Urbanchuk 2006), the amount of co-products produced will be so large that new 

uses will have to be found to ensure the success of the ethanol industry (Demirbas and Balat 

2006).  Utilizing the antioxidant potential of lignin derived from ethanol production could 

provide benefit to both the ethanol and asphalt industries.  The potential synergies between 

the two large industries could possibly create many new economic opportunities.  Also, using 

an organic, renewable performance modifier in asphalt pavements has an environmentally 

friendly appeal.  “Green pavements” could possibly have the same impact on the construction 

materials industry as ethanol has been to the energy sector.   

1.2 Objective  

 The main objective of this study is to evaluate the effects of lignin-containing ethanol 

co-products for use in asphalt binder.  This is a first-phase study which evaluates whether the 

co-products have an overall positive or negative effect on the binders.  Work was performed 

to analyze how the lignin-containing co-products chemically and physically interact with 

samples of asphalt binder.   

1.3 Thesis Arrangement  

 This thesis first presents a literature review that summarizes the past use of 

antioxidants in asphalt binder.  Asphalt oxidation is explained, along with how lignin acts as 

an antioxidant.  State-of-the-art experimental methods were explored to determine the best 

possible method of analysis. Chapter 3 explains the experimental procedures used to analyze 

lignin-containing co-products as performance enhancers in asphalt binder.  The experimental 
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plan is also outlined and rationalized.  The results of the various experiments are illustrated 

and summarized in Chapter 4.  Chapter 5 is dedicated to the statistical analysis of the data.  

General trends are presented, which state how the co-products affect the various binders.  

The final chapter states the conclusions of the experiment.  Recommendations are made, 

along with future work that can be performed to better understand the effect that lignin- 

containing co-products have on asphalt materials.   
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2. LITERATURE REVIEW 

2.1 The Economy and Biofuels 

The United States is currently working to establish a more bio-based economy 

(Demirbas and Balat 2006).  A bio-based economy utilizes energy from renewable organic 

matter rather than fossil fuels. Biofuels have several advantages over fossil fuels.  Biofuels 

are renewable, environmentally friendly, provide energy security, and present a large 

economic opportunity for the United States (Demirbas and Balat 2006).   

The most developed and widely used biofuel on the market is corn-derived ethanol.  

Production of ethanol from corn is not a new technology.  Ethanol was first introduced in the 

early 1900s for use in the first Ford Model Ts (Bothast and Schlicher 2005).  The carburetor 

on the Model T had an adjustment valve that allowed for the use of ethanol.  It was Henry 

Ford’s vision to build an affordable vehicle that could be powered by a fuel that would boost 

the U.S. economy (Bothast and Schlicher 2005).  Ethanol was used well into the 1930s.  

However, after World War II, gas and oil became so abundant and affordable that ethanol 

nearly disappeared from the market.  It was not until the 1970s that ethanol came back into 

use.  In 1973, political strife within the Middle East and the Organization of Petroleum 

Exporting Countries (OPEC) caused large gas and oil supply interruptions for the United 

States.  That resulted in a renewed interest in renewable energy sources, particularly ethanol.  

In 1979, the U.S. produced approximately ten million gallons of ethanol (Bothast and 

Schlicher 2005).  Interest in ethanol continued to grow as Congress passed the Clean Air Act 

of 1990.  Legislation mandated that gasoline contain an oxygen source to reduce toxic 

emissions (Bothast and Schlicher 2005, Gulati et al. 1997).  Oxygenates ethanol and methyl-

tert-butyl-ether (MTBE) help reduce emissions, displace toxic components of gasoline, 
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reduce emissions of volatile organic compounds, carbon monoxide, nitrogen oxides, and 

other toxics (Renewable Fuels Association 2004).  However, MTBE is a known pollutant and 

has caused widespread contamination of water supplies (Renewable Fuels Association 2004).  

Approximately thirty percent of urban water wells have been negatively impacted by MTBE.  

Nationwide, it is the second most found chemical in groundwater next to formaldehyde 

(Renewable Fuels Association 2004).  Ethanol is a much better alternative to MTBE because 

it is entirely biodegradable, and only twice the volume of ethanol is needed since it contains 

twice the amount of oxygen as MTBE (Bothast and Schlicher 2005).   Due to the gradual 

phase out of MTBE and the greater demand for energy, ethanol production has grown 

dramatically from 2.8 billion gallons in 2003 to 4.9 billion gallons in 2006 (Bothast and 

Schlicher 2005).  Ethanol production is forecasted to be approximately 9.8 billion gallons in 

2015 (Urbanchuk 2006).   

Not only is ethanol better for the environment and U.S. energy security, ethanol is 

good for the economy (Bothast and Schlicher 2005, Demirbas and Balat 2006, Renewable 

Fuels Association 2004).  Rural America benefits greatly from the use of corn as a renewable 

fuel.  Ethanol increases the demand for corn, which raises corn profits, putting more money 

in many economically depressed rural areas. Also, the increased corn prices help lower 

federal farm program costs.  In 2006 alone, the ethanol industry was responsible for creating 

over 160,000 jobs and boosted U.S. household income by nearly 6.7 billion dollars (Iowa 

Corn 2006, Urbanchuk 2006).  The average 100 million gallon per year ethanol plant 

annually produces 406 million dollars for the local economy, 223 billion of gross output, and 

supports nearly 1,600 jobs, increasing household income by 50 million dollars (Iowa Corn 

2006, Urbanchuk 2006). 
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Ethanol production produces many different co-products (Bothast and Schlicher 

2005).  The type of co-products created depends upon the method of ethanol production.  

There are two different methods used to produce ethanol: dry mill and wet mill.  The 

majority of ethanol plants in the United States are dry mill (66%) (Bothast and Schlicher 

2005).  Dry milling focuses on ethanol production and maximizing capital return (Bothast 

and Schlicher 2005).  Dry milling involves milling the whole corn kernel, liquefying it to 

produce a mash, and then adding enzymes and yeast to produce ethanol (Bothast and 

Schlicher 2005).  The ethanol is then distilled from the mixture. For every one bushel of corn 

(56 lbs), approximately 2.8 gallons of ethanol is produced (Bothast and Schlicher 2005, Iowa 

Corn 2006).  Also, approximately 17 lbs of dried distillers grains are produced, which is the 

main co-product of dry milling.  Dried distillers grains are predominately used as livestock 

feed (Bothast and Schlicher 2005, Iowa Corn 2006).   

Wet milling is a much different process.  Wet-mill ethanol plants are more of a 

biorefinary, which separate the corn kernel into different components before ethanol is made 

(Bothast and Schlicher 2005, Gulati et al. 1997).  Figure 1 illustrates the differences between 

the wet-mill and dry-mill process.  Approximately 70-72 percent of the kernel is starch, 

which is converted into ethanol (Gulati et al. 1997).  The rest of the components are turned 

into many different co-products.  For every one bushel of corn, approximately 2.5 gallons of 

ethanol are produced.  Also, 1.6 pounds of corn oil, 2.6 pounds of gluten meal, and 13.5 

pounds of gluten feed are produced (Bothast and Schlicher 2005).  Different wet mill plants 

produce different co-products.  Many new co-products are being developed that have many 

unexplored uses.  Utilization of co-products from ethanol production is vital to the success  
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Figure 1. Different ethanol production methods (Bothast and Schlicher 2005)  

and profitability of the ethanol industry (Bothast and Schlicher 2005, Van Dam and DeKlerk-

Engles 2005).  Many uses for various co-products have yet to be discovered.   

The outer hull of the kernel contains the fiber which is composed of cellulose, 

hemicellose, and lignin (Gulati et al. 1997).  Predominately, these are used to create corn 

gluten meal. The value of corn gluten fluctuates with the available supply and the cost of 

other competing animal feed sources (Bothast and Schlicher 2005).  Profitability simply as an 

animal feed is not guaranteed, especially with the forecast for over ten billion gallons of 

ethanol is 2015.  There will be an abundance of co-products with no identified markets with 

the current ethanol production forecast (Cooper 2005).  A new use for the co-products is 

essential for the success of the ethanol industry.   

The corn gluten meal contains lignin (Bothast and Schlicher 2005).  Lignin is not 

known to have much value as a nutrient for animal feed.  Utilizing the lignin as a chemical 
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antioxidant provides the ethanol industry with more opportunities to be successful.  If the 

lignin-containing co-products could be used as an antioxidant in asphalt pavements, both 

industries could greatly benefit.   

2.2 Asphalt Oxidation 

Asphalt oxidation is the main cause of long-term deterioration in asphalt pavements 

(Domke et al. 2000, Herrington et al. 1994, Liu et al. 1998).  The complex reaction of the 

various chemicals present in asphalt with atmospheric oxygen cause aging throughout the life 

of the pavement.  Oxidative aging causes the asphalt to harden and become brittle, which can 

eventually lead to pavement failure (Herrington et al. 1994, Ruan et al. 2003).  Most of the 

aging that occurs in asphalt occurs during the process of blending the aggregate with the 

asphalt binder in the intense heat of an asphalt plant (Roberts et al. 1996).  The rate of 

oxidative aging is primarily controlled by temperature.  The oxidation rate of asphalt 

approximately doubles for every 10°C rise in temperature (Gawel and Baginksa 2004). 

During the short duration the asphalt is heated, the temperature can reach up to 135-165°C 

(Roberts et al. 1996).  Substantial rheological changes can occur, such as increased viscosity 

and decreased ductility (Domke et al. 2000, Herrington et al. 1994, Liu et al. 1998).  The 

asphalt binder in the mixture continues to age while the mix is being stored, transported, and 

eventually paved during construction (Roberts et al. 1996).   

Long-term oxidative aging begins immediately after a pavement has been constructed 

(Roberts et al. 1996).  Long-term oxidation occurs at a much slower rate than the initial 

oxidation of asphalt during mixing and construction.  However, many experts believe long-

term oxidative aging to be the cause for many pavement failures in the field (Domke et al. 

2000, Herrington et al. 1994, Liu et al. 1998).  Long-term aging causes a further large 
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increase in stiffness and loss of ductility.  Eventually, thermal and/or load stresses cause the 

pavement structure to crack.   These cracks can unite, forming alligator cracks and eventually 

potholes or other pavement failures (Figure 2).  Retardation of oxidative aging would 

maintain the elastic properties of the asphalt binder providing substantial benefit to the 

pavement structure.   

  
Figure 2. Alligator cracks and pothole formation 

Oxidative aging of asphalt is controlled by the chemical properties of the asphalt (Liu 

et al. 1998).  Asphalt binders vary widely in chemical composition (Roberts et al. 1996).  

Their composition is determined by place of origin and the refining techniques used to 

produce the asphalt.  Asphalt binder is derived from crude oil from places all around the 

world.  The crude oil of each area greatly differs because of wide geological variability.  This 

variability gives the asphalt binders widely differing chemical properties (Roberts et al. 

1996).  The important physical properties civil engineers depend on for strength and 

durability are directly influenced by the chemical properties.   

Asphalt binder is mainly composed of carbon and hydrogen, with nitrogen and sulfur 

filling in the lower percentages (Peterson 1984).  Trace amounts of heavy metals, such as 

vanadium and nickel, are also present.  These elements combine to form the main fractions of 
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asphalt cement: asphaltenes, saturates, naphthalene aromatics and polar aromatics (light and 

heavy resins, respectively).  This separation method is known as Corbett’s method and is the 

most widely used method to fractionate asphalt (Ruan et al. 2003).  These four fractions 

chemically and physically interact with each other, forming a complex colloidal system.  

Asphaltenes and saturates are normally incompatible compounds, but they are brought 

together by the presence of aromatics.  Each fraction provides different properties of asphalt.  

Asphaltenes are the main contributors of viscosity (hardening effects) while an abundance of 

aromatics and saturates decrease the ductility (elastic effects) (Ruan et al. 2003).  

Different asphalts undergo oxidation at differing rates.  Asphalts of different origin 

and distillation methods oxidize differently.  Also, the presence of a polymer can also affect 

the aging rate (Ruan et al. 2003).  Polymers, such as styrene-butadiene-styrene (SBS) and 

styrene-b-butadiene (SBR), are commonly used in high-volume roadways to increase the 

high and low temperature properties of asphalt (Ruan et al. 2003).  Polymers work by 

providing increased viscosity at high temperatures and increased ductility at low 

temperatures (Ruan et al. 2003, Lucena et al. 2004).  By increasing the high and low 

temperature properties, the service life of a pavement is increased by reducing the 

pavement’s ability to form ruts or crack.  When a polymer-modified binder undergoes 

oxidative aging, two simultaneous reactions occur.  The binder undergoes oxidation while the 

polymer chemically degrades (Ruan et al. 2003).  When a polymer-modified binder oxidizes, 

the asphaltene content of the binder increases.  This causes decreased temperature 

susceptibility with regard to stiffness and viscosity.  A decrease in the molecular size of the 

polymer produces the same effect.  As a polymer is degraded in size, the polymer-asphalt 

interactions are reduced.  Therefore, the asphalt’s temperature susceptibility is a function of 
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the combined effect of asphalt oxidation and polymer degradation (Ruan et al. 2003).  Even 

the presence of a polymer cannot stop the deleterious effects of oxidative aging on an asphalt 

pavement (Ruan et al. 2003).  There are many polymers available for use in asphalt 

pavements.  Many polymers have the similar effects of decreasing an asphalt’s temperature 

susceptibility.  However, none of them truly act as an antioxidant by preventing aging from 

oxygen radicals (Lucena et al. 2004).   

Chemical antioxidants have been studied in asphalt pavements. Chemicals such as 

lead diamyldithiocarbamate (LDADC), zinc kailkyldiathiophashate (ZDDP), zinc diabutyl 

dithiocarbamate (ZDBC), and napthenoid oil have been tested and proven to act as 

antioxidants in asphalt (Oliver 1995, Ouyang et al. 2006a, Ouyang et al. 2006b). The 

chemicals reduce the ability of free radicals to rapidly oxidize asphalt.  However, these 

chemicals have not been incorporated into the asphalt paving industry.  LDADC contains 

lead and is therefore an environmental concern.  ZDDP is used as an antioxidant to prevent 

wear in extreme pressure additives in gear oil formulations, while ZDBC is commonly used 

as an accelerator in rubber formulation (Ouyang et al. 2006b).  ZDDP and ZDBC are not cost 

effective and therefore are not likely to be used at the wide scale needed for asphalt pavement 

construction. Wood lignin has also been researched as an antioxidant in asphalt.  Wood lignin 

proved to be a very promising performance enhancer (Bishara et al. 2005).  At four and 

seven percent by weight, wood lignin provided benefit to the asphalt.  The temperature 

performance grade significantly increased.  An increased high temperature performance 

grade has a direct relationship to less rutting potential (Roberts et al. 1996).  The low 

temperature performance grade of the binders was either not affected, or showed a limited 

variation from the control value (Bishara et al. 2005).  Therefore, the lignin had an overall 
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effect of widening the temperature range of the binders.  However, wood lignin was never 

incorporated into the asphalt industry.  Wood lignin is a waste product of the paper industry.  

Many engineers and industry members are not accustomed to using asphalt pavements as a 

“horizontal landfill.”  Since wood-derived lignin carries the negative stigma of being a waste 

product, its potential use in asphalt pavements is low.  Also, the structure and behavior of 

wood lignin is widely dependent upon timber source, season of growth, moisture conditions, 

and other uncontrollable environmental variables (Terrel and Rimstritong 1979).  This makes 

it difficult to produce a homogeneous lignin product.  A homogenous lignin is needed so its 

properties can be predicted and pavements can be designed properly.  Therefore, wood lignin 

failed due to its image as a waste product and due to its inconsistency as a material.  

However, the lignin itself did prove to benefit asphalt by acting as an antioxidant.   

2.3 Lignin as an Antioxidant 

 Lignin is an extremely complex polymer that originates from the plant kingdom 

(Brauns 1952, Glasser and Sarkanen 1989).  Lignin is an amorphous compound with no set 

chemical formula.  Figure 3 illustrates the general structure of lignin.  Lignin is not a 

constitutionally defined compound, but rather a collective term for groups of high molecular 

amorphous compounds that are chemically closely related (Brauns 1952).  Lignin can 

technically be defined as the “incrusting material of a plant built mainly from phelypropane 

building stones, which are unhydrolyzable by acids, readily oxidizable, soluble in hot alkali 

and bisulfate, and readily condenses with phenols and thio compounds” (Brauns 1952).  

Lignin is a hydrocarbon and consists mainly of carbon, hydrogen, and oxygen  (Brauns 

1952). The chemical structure of lignin is highly aromatic in nature with many randomly 

attached methoxyle and hydroxyl groups.  Lignin can also contain aromatic hydrogen atoms, 
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carbonyl groups, and aliphatic double bonds.  This illustrates the complex chemical structure 

of lignin.  Lignin also has complex physical and chemical properties that vary with plant 

source, growth conditions, and extraction mechanism (Dizhbite et al. 2004).  

 

Figure 3. Chemical structure of lignin (Knee 2007) 

One key chemical property that is evident from all lignins is its ability to act as an 

antioxidant.  The antioxidant effects of lignins are derived from the scavenging action of 

their phenolic structures on oxygen containing free radicals (Dizhbite et al. 2004).  Phenolic 

structures are benzene rings with attached hydroxyl groups.  Benzene rings are six carbon 

structures with each carbon sharing a single and double covelant bond to another carbon.  In 

a phenolic group, there can be one or more hydroxyl groups attached to the benzene ring.  

The ability of phenolic compounds to be antioxidants is the functional groups’ ability to 

neutralize free radicals (Boeriu et al. 2004, Dizhbite et al. 2004, Glasser and Sarkanen 1989).  

Free radicals are known to actively break down substances by breaking apart the substance’s 

chemical structure. Phenols can neutralize a free radical by either donating a proton or an 
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electron (Dizhbite et al. 2004).  Because of its structure, phenols are able to do both while 

remaining relatively stable.  Lignins contain a large amount of phenolic groups, making them 

an effective antioxidant (Boeriu et al. 2004, Dizhbite et al. 2004).    

There are many factors that can affect the antioxidant ability of lignin.  The source of 

biological origin is the most important factor in determining the lignin structure (Dizhbite et 

al. 2004).  Most fibrous plants contain large amounts of lignin.  Worldwide, lignin is the 

second most abundant biological polymer next to cellulose (Dizhbite et al. 2004).    Trees, 

grasses, and many agricultural plants contain large amounts of lignin in the plants’ cell walls.  

Each plant is biologically and chemically different; therefore, the lignin obtained after 

extraction will be different.  The extraction method is also very important in determining the 

lignin’s antioxidant ability.  Lignins can be extracted from the plant material by chemicals 

such as ethanol, acetone, acetic acid, methanol and propanol (Dizhbite et al. 2004).  Each 

extraction method will produce a slightly different lignin, with each lignin having a slightly 

different antioxidant ability.   

 The lignin used for this study was obtained from the outer hull of the corn kernel.  

The outer hull was removed from the rest of the kernel by means of a chemical washing 

process.  The lignin remaining after the washing process is relatively small in molecular 

weight compared to lignin derived from timber or grasses.  However, the lignin contains 

large amounts of phenol structures, giving it excellent antioxidant ability.  The lignin- 

containing co-products were combined with different asphalt binders to evaluate the effect 

the co-products have on asphalt binder.   The next chapter explains the experimental methods 

used to evaluate the co-products in asphalt binder.  
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3. EXPERIMENTAL METHODS 

3.1 Experimental Materials 

Four asphalt binders were selected for this study.  Two of the binders are local 

binders used in Iowa, while the other two binders are well-studied, nationally-used binders.  

The two local binders were obtained from a supplier in Tama, Iowa.  One binder is a styrene-

butadiene-styrene (SBS) polymer modified PG 58-22 (LPMB), while the other binder is 

unmodified and is a PG 64-16 (LB).  The two well-known binders were obtained from the 

Federal Highway Administration’s Materials Reference Library (MRL) in Sparks, Nevada.  

One binder is a PG 58-22 California Costal asphalt referenced as AAD-1.  The other binder 

is a PG 64-16 West Texas Asphalt given the designation AAM-1.  AAD-1 and AAM-1 vary 

greatly in their chemical composition.  AAD-1 is known to be more susceptible to oxidative 

aging, while AAM-1 is known to be less susceptible to oxidative aging (Mortazavi and 

Moulthrop 1993).  Table 1 illustrates the chemical composition of the two MRL binders.   

Table 1. Chemical contrast of AAD-1 and AAM-1 (Mortazavi and Moulthrop 1993) 

Component 

composition
AAD-1 AAM-1

Elemental 

composition
AAD-1 AAM-1

Asphaltenes 23.9 9.4 Carbon 81.6 86.8

Polar aromatics 41.3 50.3 Hydrogen 10.8 11.2

Napthene aromatics 25.1 41.9 Oxygen 0.9 0.5

Saturates 8.6 1.9 Sulfur 6.9 1.2  

Three different lignin-containing co-products were used for this study.  All co-

products were obtained from the same source.  Grain Processing Corporation (GPC) 

provided the co-products for this study. GPC operates a full-scale, wet-mill corn-based 

ethanol plant in Muscatine, Iowa.  The three different co-products were obtained during the 

initial processing of the corn.  Before the corn kernel is processed into ethanol, the outer hull 
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is removed.  The outer hull consists mainly of cellulose, hemi-cellulose, and lignin (Gulati et 

al. 1997).  Through different processing methods, three different lignin-containing co-

products were developed.  Co-product A is an alkaline-washed corn hull while co-product B 

is an acid-modified corn hull.  Co-product C is an unmodified corn hull.  Co-products A and 

B contain slightly more lignin than co-product C.  Each co-product was thoroughly dried to 

approximately ten percent moisture and ground into a fine powder.  The co-products possess 

a lignin content ranging from ten to twelve percent, depending upon the method of 

production.   The exact lignin content of each co-product is unknown.  The remainders of the 

co-products are cellulose and hemi-cellulose, which are inert biological polymers.  A fourth 

co-product was added later in the research.  Co-product D was further modified by having the 

lignin chemically removed to leave cellulose and hemi-cellulose.  This sample will act as a 

control since it contains no lignin and therefore has no antioxidant ability.  Co-product D is 

used to help determine if the effects the lignin-containing co-products have on the binders are 

purely physical filler effects, or if there is antioxidant activity present.  If treatment 

combinations with co-products A, B, and C are more beneficial than co-product D, then there 

is possibly some beneficial antioxidant activity between the lignin and the binder.  Figure 4 

illustrates the physical appearance of the co-products.   

3.2 Experimental Plan 

The experimental matrix is to test all four asphalt binders with all three lignin- 

containing co-products (A, B, and C) at varying amounts.  Each binder was blended with co-

products A, B, and C at three, six, and nine percent by weight.  Nine percent was chosen as 

the high limit since previous studies show that the addition of approximately ten percent of 
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lignin causes a negative effect on the binder (Bishara et al. 2005).  Two of the binders (AAD-

1 and LPMB) and were evaluated with the addition of twelve percent of co-products A, B,  

 

Figure 4. Wet-mill ethanol co-products used in study 

and C to see if any further benefit to the asphalt binders can be seen.  Co-product D was 

tested with AAD-1 and AAM-1 at three, six, and nine percent to evaluate if the lignin- 

containing co-products are acting as an antioxidant and/or filler. Each binder was also tested 

without the addition of any co-products.  Table 2 illustrates the treatment group combinations 

evaluated during the study. 52 treatment combinations were produced which underwent 

asphalt binder performance testing.  

Table 2.  Treatment group combinations 

 

Co-product AAD-1 AAM-1 LPMB LB

A 0, 3, 6, 9, 12 0, 3, 6, 9 0, 3, 6, 9, 12 0, 3, 6, 9

B 3, 6, 9, 12 3, 6, 9 3, 6, 9, 12 3, 6, 9

C 3, 6, 9, 12 3, 6, 9 3, 6, 9, 12 3, 6, 9

D 3, 6, 9 3, 6, 9 -- --

Numbers indicate amount of ligin added by percent weight

Binders
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Each treatment combination was performance tested according to ASSHTO M 320 

(2002) and ASTM D 6373 (1999).  Initially, the asphalt binder was blended with the co-

products using a high-speed sheer mill.  The binder was heated to 155°C before the shear 

mill was started.  Once the binder reached temperature, the shear mill was set to 

approximately 5000 rotations per minute for one hour.  Once the binder and co-product were 

thoroughly blended, the blends immediately underwent performance testing.   

3.3 Performance Testing 

Performance grading an asphalt binder requires many steps and several separate 

testing procedures.  Initially, each binder/co-product combination was tested using a dynamic 

shear rheometer (DSR) according to ASTM D 7175 (2005).  A DSR characterizes the visco-

elastic properties of a material by determining the complex modulus (G*) and phase angle (δ) 

of the sample.  The complex modulus is the overall resistance of the asphalt to deformation 

when repeatedly sheared (McGennis et al. 1994).  The complex modulus consists of two 

parts, storage modulus (G’) and elastic modulus (G”).  At higher temperatures, asphalt 

behaves like a viscous material; at low temperatures, the asphalt behaves as an elastic 

material.  However, at most intermediate temperatures, asphalt behaves as a visco-elastic 

material, exhibiting both viscous and elastic behavior.  The phase angle determines how 

much the behavior of the complex modulus is viscous, and how much is elastic (McGennis et 

al. 1994).  The relationship between G*, G’, G”, and δ is shown in Figure 5.   

Each binder/co-product combination was tested unaged, immediately after mixing 

with a DSR.  Each combination was tested at three different temperatures, with the 

temperatures depending upon the stated performance grade of the binders prior to blending  
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Figure 5. Components of the complex modulus 

the co-products.  The high temperature performance grade of each binder is in part 

determined with the unaged DSR test.  A sample fails at a given temperature if the value of 

G*/sin(δ) is less than 1.00 kPa.  If the G*/sin(δ) drops below the cutoff value, then the 

chance of rutting increases.  The high temperature performance grade is set to control rutting 

(Bahia and Anderson 1995, The Asphalt Institute 2003).  Typically, high temperature asphalt 

performance grades are determined in six degree increments.  However, for this study, a 

continuous performance grade (PG) scale will be determined for each sample. For instance, 

instead of a PG 58 or PG 64, the samples will be given performance grades to the nearest 

0.1°C.  The three test temperatures were used to provide sufficient data to produce a 

regression line that determines the predicted temperature when the G*/sin(δ) value is equal to 

1.00 kPa.  Each binder was also tested in triplicate to provide a good estimation of the 

variation between the samples of the same treatment group.   

 Next, each binder/co-product combination was short-term aged in a rolling thin film 

oven (RTFO) according to ASTM D 2872 (2004).  A RTFO ages a sample of asphalt for 85 

minutes at 163.0°C.  35.0 grams of asphalt is added to small cylindrical bottles with an 

opening at one end.  Eight bottles are loaded onto a carousel and rotated while being heated 

δ 
G’ 

G’’ 

G* 
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to produce thin films of asphalt binder.  Hot air is blown into the bottles while they are being 

aged.  This aging procedure mimics the aging a binder goes through while being mixed with 

aggregate and constructed in the field (Roberts et al. 1996, The Asphalt Institute 2003). 

During this process, the binder undergoes oxidative age hardening and has noticeably stiffer 

properties.  The mass of the asphalt before aging and after aging was recorded to determine 

mass loss during aging.  Mass loss may not exceed 1.0 percent according to Superpave 

specifications (The Asphalt Institute 2003).   

 After a sample was short-term aged in a RTFO, it was then again analyzed for high 

temperature properties with a DSR.  The same three temperatures were used for each sample 

as were used during the unaged test.  However, instead of having a failure criterion of 1.0 

kPa as for the unaged blends, the failure criterion increases to 2.2 kPa due to the stiffening of 

the asphalt (The Asphalt Institute 2003).  Another high temperature performance grade was 

determined using the RTFO residue of the binder/co-product blends.  The lowest of the two 

high temperature performance grades (unaged or RTFO aged) was used for the final high 

temperature performance grade.   

 The remainder of the RTFO residue was further aged using a pressure aging vessel 

(PAV) according to ASTM D 6521 (2004).  A PAV ages the asphalt with high pressure (2.1 

MPa) and high heat (100°C) for 20 hours.  The PAV simulates 5-10 years of in-service aging 

(Bahia and Anderson 1994).  After the samples were aged, they were placed in a vacuum 

oven at 163°C for 30 minutes to remove entrapped air in the samples.  The PAV aged asphalt 

is used to test the intermediate critical temperature with the DSR.  Instead of using G*/sin(δ), 

G*sin(δ) is used because it better represents a control for the fatigue cracking phenomenon 

that occurs at intermediate temperatures.  As a binder ages, it becomes more susceptible to 
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fatigue cracking due to the oxidation of the binder (Bahia and Anderson 1995).   The 

intermediate service temperature is set to control fatigue cracking, even though the 

intermediate temperature is not actually part of the performance grade.  However, it can 

predict how a binder will behave at intermediate temperatures.  A limit of 5000 kPa is used 

for the intermediate service temperature (The Asphalt Institute 2003).   The binder/co-

product combinations were all tested at three temperatures so each sample’s intermediate 

temperature could be determined.  As was with the previous DSR tests, the samples were all 

tested in triplicate.   

 The final test in determining the low temperature performance grade of an asphalt 

binder involves the use of a bending beam rheometer (BBR).  A BBR tests an asphalt binder 

at low service temperatures to determine the asphalts susceptibility to thermal cracking 

(Roberts et al. 1996, The Asphalt Institute 2003).  Asphalt binder is very susceptible to 

thermal cracking at low temperatures due to the fact that asphalt becomes less viscous as it is 

cooled.  Rapid cooling and warming cause the binder to contract and expand, putting large 

thermal stresses on the material (Roberts et al. 1996).  The asphalt/lignin blends were tested 

according to ASTM 6648 (2001). Asphalt is poured into small, rectangular beams and stored 

below -0.5°C to allow for proper handling.  The beams are placed in a fluid bath that 

maintains low temperatures.  After being in the fluid bath for one hour, the beams are 

individually placed on a loading frame and subjected to a load for 240 seconds.  The 

deflection is measured versus time, which is used to calculate the two key properties of 

stiffness and change in stiffness (m-value).  A sample of asphalt binder can fail at a given 

temperature by either having a stiffness of greater than 300 MPa or an m-value less than 
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0.300 (Bahia and Anderson 1994, The Asphalt Institute 2003).  The low critical temperatures 

were also determined using regression analysis from the different test temperatures.   

3.4 Physical Property Testing 

 The binder/co-product combinations were tested for separation effects according to 

ASTM D 7173 (2005).  The blended samples were poured into aluminum cigar tubes and set 

vertically into an oven at 155°C for at most 48 hours.  After heating, the tubes were removed 

and immediately frozen.  The tubes were then cut into three equal-sized portions.  The top 

and bottom portions were tested in a rotational viscometer to determine viscosity differences 

according to ASTM D 4402 (2006).  If there are large viscosity differences, then the lignin 

must be physically separating out of the asphalt binder.  Separation of the lignin from the 

asphalt could cause potential problems with future binder handling and construction.  Along 

with testing for separation after 48 hours, the blends were also tested at 12 and 24 hours.  

This will provide a better estimate of when the lignin starts to separate out of solution, if 

separation occurs.   

The solubility of the blended samples was determined immediately after mixing 

according to ASTM D 2042 (2001).  This will show whether or not the lignin-containing co-

products are chemically soluble with asphalt. A sample must have less than 1.0 percent be 

insoluble to pass.  Specific gravity was also determined according to ASTM D 70 (2003).  

Specific gravity testing will show the change in densities of the binders as co-products are 

added.   

3.5 Oxidation Testing 

 Fourier transform infrared spectroscopy (FTIR) testing was performed to quantify the 

amount of oxidative aging that occurs with the blended samples.  FTIR is an extremely 
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powerful tool for identifying types of chemical bonds (functional groups).  When asphalt is 

oxidized, the chemical structure of asphalt is changed.  Functional groups, such as carboxylic 

acids, ketones, sulfoxides, and anhydrides, are formed from oxidation (Lucena et al. 2004).  

Carboxylic acids and ketones contain one carbonyl group, while anhydrides contain two 

carbonyl groups.  A carbonyl bond is a carbon atom bonded to an oxygen atom with a double 

covalent bond.  Therefore, when FTIR testing is performed, asphalt binders that have 

oxidized more will have larger amounts of carbonyl groups (Lucena et al. 2004).  More 

sulfoxides will also be present.  A FTIR test produces a spectrum with peaks that illustrates 

wave number versus absorbance or transmittance.  The larger a peak at a given wave number, 

the larger the amount of that specific functional group present in the material.  Carbonyl 

groups appear at approximately 1650 cm
-1

, while sulfoxides appear at 1030 cm
-1 

(Lucena et 

al. 2004).   The different asphalt/co-product blends will be analyzed with FTIR to determine 

the how the blends age with added co-product.  A decreased amount of either carboxyl or 

sulfoxide groups would indicate less oxidative aging.   
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4. RESULTS 

4.1 Performance Grade Testing   

4.1.1 Unaged Blends 

All binder/co-products combinations were performance graded according to ASTM D 

6373 (1999) and AASHTO M 320 (2002).  Initially, all samples were tested unaged in a 

DSR.  G*/sin(δ) values were recorded for each combination at three temperatures.  Each 

treatment combination was also tested in triplicate for proper estimation of random error for 

statistical analysis.  To determine the high temperature performance grade on a continuous 

scale, or high critical temperature, three G*/sin(δ) values were plotted versus temperature on 

a semi-log scale.  Asphalt binder properties have a semi-log relationship with temperature 

(McGennis et al. 1994).  The G*/sin(δ) value approximately doubles for every 6°C drop in 

temperature. Figure 6 illustrates one test for one binder/co-product combination.  
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Figure 6. Example of test results for one binder/co-product sample  

As mentioned previously, the failure criterion for unaged asphalt is when G*/sin(δ) is less 

than 1.00 kPa.  The high critical temperature was developed for each sample by creating a 

semi-log regression line using the method of least squares.  The temperature when G*/sin(δ) 
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is equal to 1.00 kPa is equal to the high critical temperature. Three high critical temperatures 

were determined for each binder/co-product combination.  The average temperatures for each 

binder/co-product combination are listed in Table 3.  Complete test data including G*/sin(δ) 

values for each test temperature are the Appendix.  

Table 3. Mean values of unaged high critical temperatures  

Co-

product 

(type)

Co-

product 

(%)

Temp. 

(°C)

Co-

product 

(type)

Co-

product 

(%)

Temp. 

(°C)

Co-

product 

(type)

Co-

product 

(%)

Temp. 

(°C)

Co-

product 

(type)

Co-

product 

(%)

Temp. 

(°C)

A 12 64.8 A 9 68.7 A 12 67.7 A 9 70.4

B 12 67.2 B 9 69.8 B 12 68.7 B 9 72.2

C 12 64.5 C 9 68.8 C 12 66.7 C 9 71.7

A 9 64.8 D 9 71.1 A 9 66.7 A 6 69.9

B 9 66.6 A 6 68.5 B 9 68.6 B 6 71.9

C 9 64.5 B 6 69.3 C 9 67.1 C 6 70.6

D 9 66.7 C 6 68.8 A 6 66.4 A 3 69.3

A 6 64.5 D 6 69.0 B 6 66.7 B 3 71.1

B 6 64.8 A 3 68.5 C 6 65.8 C 3 70.7

C 6 63.4 B 3 68.5 A 3 66.1 -- 0 68.9

D 6 65.5 C 3 68.1 B 3 67.2

A 3 63.7 D 3 69.3 C 3 65.9

B 3 64.8 -- 0 67.8 -- 0 62.3

C 3 62.8

D 3 64.8

-- 0 62.3

AAD-1 AAM-1 LPMB LB

 

4.1.2 RTFO Aged Blends 

 After the blends were individually short-term aged in a RTFO, they were again tested 

with a DSR.  Superpave specifications require that the mass loss after RTFO aging be less 

than one percent (The Asphalt Institute 2003). The mass loss for all binder/co-product 

combinations was less than one percent.  The RTFO aged samples were tested the same as 

the unaged samples.  The binder/co-product combinations were tested at three temperatures, 

and each blend was tested in triplicate.  However, since RTFO aged samples have been aged 

by oxidation, the failure criterion is different.  The larger the G*/sin(δ) value, the stiffer the 
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asphalt.  Following Superpave specifications, 2.20 kPa is used as the failure criterion (The 

Asphalt Institute 2003).  Therefore, the RTFO aged high critical temperature is the 

temperature when G*/sin(δ) is 2.20 kPa using regression equations for each sample.  Table 4 

illustrates the critical high temperature for the RTFO aged samples.  Also included in Table 4 

is the change from RTFO aged high critical temperature to the unaged high critical 

temperature.  The RTFO aged high critical temperatures for AAD-1, LMPB, and LB were 

predominately increased from the unaged high critical temperatures.  With AAM-1, the 

opposite effect occurred because AAM-1 is known to be resistant to oxidative aging.    

Table 4. Mean values of RTFO aged high critical temperatures  

Co-

prod. 

(type)

Co-

prod. 

(%)

Temp. 

(°C)

∆ in 

high 

Tc

Co-

prod. 

(type)

Co-

prod. 

(%)

Temp. 

(°C)

∆ in 

high 

Tc

Co-

prod. 

(type)

Co-

prod. 

(%)

Temp. 

(°C)

∆ in 

high 

Tc

Co-

prod. 

(type)

Co-

prod. 

(%)

Temp. 

(°C)

∆ in 

high 

Tc

A 12 67.9 3.1 A 9 67.6 -1.1 A 12 71.8 4.1 A 9 71.9 1.5

B 12 70.1 2.9 B 9 67.2 -2.6 B 12 72.5 3.8 B 9 72.4 0.2

C 12 67.2 2.7 C 9 68.5 -0.3 C 12 71.2 4.5 C 9 72.3 0.6

A 9 67.5 2.7 D 9 69.2 -1.9 A 9 67.7 1.0 A 6 71.4 1.5

B 9 69.3 2.7 A 6 68.2 -0.3 B 9 69.3 0.7 B 6 72.5 0.6

C 9 67.0 2.5 B 6 66.9 -2.4 C 9 69.1 2.0 C 6 71.8 1.2

D 9 67.2 0.5 C 6 67.5 -1.3 A 6 66.8 0.4 A 3 71.6 2.3

A 6 66.9 2.4 D 6 68.1 -0.9 B 6 68.1 1.4 B 3 71.9 0.8

B 6 68.6 3.8 A 3 66.9 -1.6 C 6 68.4 2.6 C 3 71.4 0.7

C 6 66.2 2.8 B 3 66.8 -1.7 A 3 66.4 0.3 -- 0 71.1 2.2

D 6 65.3 -0.2 C 3 67.0 -1.1 B 3 67.1 -0.1

A 3 65.8 2.1 D 3 67.7 -1.6 C 3 67.3 1.4

B 3 67.5 2.7 -- 0 66.7 -1.1 -- 0 66.7 4.4

C 3 66.7 3.9

D 3 66.8 2.0

-- 0 65.4 3.1

AAD-1 AAM-1 LPMB LB

 

4.1.3 PAV Aged Blends  

 After being long-term aged in a PAV, the binder/co-product combinations were again 

tested with a DSR.  PAV aged samples are used to evaluate intermediate critical temperature.  

The response produced by a DSR for PAV aged samples is G*sin(δ) rather than G*/sin(δ).  

Using a failure criterion of 5000 kPa and semi-log regression equations, intermediate critical 
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temperatures were created.  The means for all asphalt/lignin blends are shown in Table 5.  

The low critical temperature was determined using a BBR.  As previously mentioned, a BBR 

test produces two responses: stiffness and the m-value.  A sample can fail at a given 

temperature if the stiffness is greater than 300 MPa or if the m-value is less than 0.300.  For 

all samples in this study, the m-value was the limiting value.  The stiffness remained under 

300 MPa for every test.  Linear regression was used to determine the low critical 

temperatures.  The low critical temperature is the value when the m-value is equal to 0.300 

minus 10°C. 10°C is subtracted from the low critical temperature due to the theory behind 

the test methods (The Asphalt Institute 2003).  The low critical temperatures for all samples 

are listed in Table 6.   

Table 5. Mean values for PAV aged intermediate critical temperatures  

Co-

product 

(type)

Co-

product 

(%)

Temp. 

(°C)

Co-

product 

(type)

Co-

product 

(%)

Temp. 

(°C)

Co-

product 

(type)

Co-

product 

(%)

Temp. 

(°C)

Co-

product 

(type)

Co-

product 

(%)

Temp. 

(°C)

A 12 18.5 A 9 22.4 A 12 22.4 A 9 23.9

B 12 19.6 B 9 22.9 B 12 22.7 B 9 24.6

C 12 18.5 C 9 21.4 C 12 22.2 C 9 24.2

A 9 18.2 D 9 23.9 A 9 20.1 A 6 23.9

B 9 19.0 A 6 19.8 B 9 21.8 B 6 24.3

C 9 18.3 B 6 22.0 C 9 20.2 C 6 24.2

D 9 20.3 C 6 22.1 A 6 20.2 A 3 23.7

A 6 18.0 D 6 24.5 B 6 21.9 B 3 24.2

B 6 18.7 A 3 18.6 C 6 20.2 C 3 23.9

C 6 18.1 B 3 20.6 A 3 20.2 -- 0 23.5

D 6 19.5 C 3 20.9 B 3 21.9

A 3 17.3 D 3 23.1 C 3 20.2

B 3 18.1 -- 0 20.3 -- 0 20.1

C 3 17.8

D 3 19.2

-- 0 17.3

AAD-1 AAM-1 LPMB LB
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Table 6. Mean values of PAV aged low critical temperatures 

Co-

product 

(type)

Co-

product 

(%)

Temp. 

(°C)

Co-

product 

(type)

Co-

product 

(%)

Temp. 

(°C)

Co-

product 

(type)

Co-

product 

(%)

Temp. 

(°C)

Co-

product 

(type)

Co-

product 

(%)

Temp. 

(°C)

A 12 -24.1 A 9 -14.9 A 12 -19.6 A 9 -16.7

B 12 -23.2 B 9 -14.8 B 12 -19.1 B 9 -17.5

C 12 -23.4 C 9 -15.2 C 12 -18.8 C 9 -17.4

A 9 -23.8 D 9 -12.7 A 9 -21.2 A 6 -18.3

B 9 -23.5 A 6 -16.1 B 9 -19.6 B 6 -18.7

C 9 -23.8 B 6 -14.9 C 9 -21.5 C 6 -17.9

D 9 -22.1 C 6 -14.7 A 6 -20.9 A 3 -18.4

A 6 -21.9 D 6 -13.1 B 6 -19.8 B 3 -18.1

B 6 -24.1 A 3 -14.0 C 6 -20.3 C 3 -17.6

C 6 -22.7 B 3 -14.9 A 3 -21.5 -- 0 -19.5

D 6 -22.5 C 3 -15.2 B 3 -20.1

A 3 -24.0 D 3 -13.4 C 3 -21.7

B 3 -22.3 -- 0 -15.1 -- 0 -22.0

C 3 -23.8

D 3 -23.4

-- 0 -23.5

AAD-1 AAM-1 LPMB LB

 

4.2 Physical Properties 

4.2.1 Specific Gravity 

The gradation and densities of co-products A, B, and C are listed in Table 7.   

Table 7.  Gradations and density of lignin-containing co-products 

Co-product A Co-product B Co-product C

Mesh (% retained) (% retained) (% retained)

60 1.8 0.2 30.2

80 15.1 19.2 53.9

100 13.2 14.8 10.7

200 31.0 40.0 5.0

325 26.0 14.3 0.2

Pan 12.8 12.2 0.0

Density 

(g/cm
3
)

0.88 0.50 0.49

 

Co-products A, B, and C have bulk densities less than 1.0 g/cm
3
.  However, when the co-

products are blended and dispersed into the binder, the density of the blends increases with 

the further addition of a co-product.  Binders AAM-1 and AAD-1 were each combined with 
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co-products A, B, and C at three, six, and nine percent by weight.  As can be seen from 

Figures 7 and 8, the specific gravity of the blends increases linearly with the amount of co-

products added.  

4.2.2 Solubility   

 The solubility of the asphalt/lignin blends was determined according to ASTM D 

2042 (2001).  The binder/co-product combinations were mixed with trichloroethylene and 

passed through a fiberglass filter to determine the amount of material that did not solubolize 

in the binder.  A sample fails if greater than 1.0 percent of the total mixture is retained on the 

filter.  AAD-1 was used for testing solubility.  Co-products A, B, and C were tested at three 

percent addition to AAD-1.  If the samples failed at three percent, then they would fail at the 

higher lignin amounts.  Table 8 illustrates the amount of material that was not soluble in 

trichloroethylene.  None of the samples passed the 1.0 percent criteria.  
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Figure 7.  Specific gravity of AAM-1 with co-products A, B, and C 
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Figure 8.  Specific gravity of AAD-1 with co-products A, B, and C 

 

Table 8.  Solubility of ADD-1 with three percent of co-products A, B, and C 

Co-product 

(type)

Insoluable 

(%)

Co-product 

(type)

Insoluable 

(%)

Co-product 

(type)

Insoluable 

(%)

A 1.9 B 2.5 C 2.5

A 2.1 B 2.1 C 2.3

A 1.3 B 2.1 C 1.9  

4.2.3 Separation Testing 

 Initially, co-products A, B, C, and D were combined with AAD-1 at nine percent to 

determine which co-product has the greatest and least separation effects.  The samples were 

stored in an oven at 155°C for 6, 24, and 48 hours.  The viscosities of the top and bottom 

portions were measured for each sample according to ASTM D 4402 (2006).  Results of the 

separation testing are listed in Table 9.  It can be seen from Table 8 that co-product A has the 

lowest amount of separation, while co-product B has the greatest separation effects.   
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Table 9. Separation data of AAD-1 with co-products A, B, C, and D at nine percent 

Co-

product 

(type)

Heating 

time 

(hours)

Portion 

(B or T)

Viscosity 

at 135°C 

(cP)

Diff. 

(%)

Co-

product 

(type)

Heating 

time 

(hours)

Portion 

(B or T)

Viscosity 

at 135°C 

(cP)

Diff. 

(%)

A 6 B 427.5 15.2 C 24 B 570.0 33.6

A 6 T 362.5 -- C 24 T 378.3 --

B 6 B 603.3 38.4 D 24 B 525.0 37.1

B 6 T 371.7 -- D 24 T 330.0 --

C 6 B 462.3 21.0 A 48 B 559.3 29.4

C 6 T 365.2 -- A 48 T 395.0 --

D 6 B 455.0 29.2 B 48 B 814.2 50.9

D 6 T 322.0 -- B 48 T 400.0 --

A 24 B 492.5 23.9 C 48 B 665.0 42.9

A 24 T 375.0 -- C 48 T 379.5 --

B 24 B 724.2 46.7 D 48 B 595.5 43.7

B 24 T 385.8 -- D 48 T 335.2 --  

Further separation testing was performed with AAD-1 and co-product A at zero, 

three, six, and nine percent to see the separation effects with differing amounts of co-product.  

The results are listed in Table 10. It can be seen that the more co-product added, the greater 

the separation effects.  Even with the lowest amount of co-product added (3 percent), 

significant separation effects are noticed.   

Table 10. Separation data of AAD-1 with co-product A at 0, 3, 6 and 9 percent 

Co-

product 

(type)

Heating 

time 

(hours)

Portion 

(B or T)

Viscosity 

at 135°C 

(cP)

Diff. 

(%)

Co-

product 

(type)

Heating 

time 

(hours)

Portion 

(B or T)

Viscosity 

at 135°C 

(cP)

Diff. 

(%)

0 6 B 345.0 2.2 6 6 B 401.7 12.2

0 6 T 337.5 6 6 T 352.5 --

0 24 B 365.0 6.4 6 24 B 513.3 22.6

0 24 T 341.5 6 24 T 397.5 --

0 48 B 383.2 5.6 6 48 B 568.3 28.4

0 48 T 361.7 6 48 T 406.7 --

3 6 B 370.0 2.9 9 6 B 427.5 15.2

3 6 T 359.2 9 6 T 362.5 --

3 24 B 413.3 9.1 9 24 B 492.5 23.9

3 24 T 375.8 9 24 T 375.0 --

3 48 B 455.0 15.7 9 48 B 559.3 29.4

3 48 T 383.5 9 48 T 395.0 --  
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Finally, all binders were tested with the addition of six percent co-product A to 

determine different separation effects of each binder.  Table 11 illustrates the results.  AAM-

1 has the least separation effects, while the local binder has the greatest effects.  The trend of 

increased separation with longer storage time can also be noticed.  

Table 11. Separation data of six percent co-product A with all binders 

Binder

Heating 

time 

(hours)

Portion 

(B or T)

Viscosity 

at 135°C 

(cP)

Diff. 

(%)
Binder

Heating 

time 

(hours)

Portion 

(B or T)

Viscosity at 

135°C (cP)

Diff. 

(%)

AAD-1 6 B 401.7 12.2 LB 24 B 788.3 31.2

AAD-1 6 T 352.5 -- LB 24 T 542.5 --

AAM-1 6 B 388.3 3.2 LPMB 24 B 707.5 24.7

AAM-1 6 T 375.8 -- LPMB 24 T 532.5 --

LB 6 B 565.0 7.1 AAD-1 48 B 568.3 28.4

LB 6 T 525.0 -- AAD-1 48 T 406.7 --

LPMB 6 B 602.2 12.7 AAM-1 48 B 740.0 16.8

LPMB 6 T 525.8 -- AAM-1 48 T 615.8 --

AAD-1 24 B 513.3 22.6 LB 48 B 791.7 29.7

AAD-1 24 T 397.5 -- LB 48 T 556.7 --

AAM-1 24 B 704.2 12.8 LPMB 48 B 755.0 28.6

AAM-1 24 T 614.0 -- LPMB 48 T 539.2 --  

4.3 Antioxidant Testing 

 FTIR spectrometry was performed on various combinations to determine the 

chemical effect the lignin in the co-products has on the binders.  Spectrometry testing was 

only performed on PAV aged blends since they have all undergone long-term oxidative 

aging.  The samples were tested at Western Research Institute in Laramie, Wyoming.  The 

local polymer modified binder was not tested since the polymer interferes with the analysis 

of the effects of the lignin.  Table 12 illustrates the results of the testing.  Three and nine 

percent of co-products A, B, and C were tested with AAD-1, AAM-1, and the local binder 

(LB).  The carbonyl content and sulfoxide contents were reported.  Both of these functional 

groups are products of oxidative aging.   
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Table 12. FTIR spectrometry analysis 

Carbonyl 

content

Sulfoxide 

content

Carbonyl 

content

Sulfoxide 

content

Carbonyl 

content

Sulfoxide 

content

(au) (mol/liter) (au) (mol/liter) (au) (mol/liter)

-- 0 0.0776 0.3665 0.1410 0.1440 0.0913 0.3285

A 3 0.0784 0.2840 0.1432 0.1110 0.0866 0.3630

B 3 0.0839 0.3600 0.1502 0.1245 0.0880 0.3430

C 3 0.0902 0.3870 0.1400 0.1310 0.0892 0.3320

A 9 0.0812 0.3985 0.1458 0.1395 0.0964 0.3200

B 9 0.0852 0.4030 0.1380 0.1400 0.0850 0.3590

C 9 0.0884 0.2130 0.1417 0.1260 0.0906 0.2635

LB
Co-

product 

(Type)

Co-

product 

(%)

AAD-1 AAM-1

 

 The next chapter features the statistical analysis of the previously reported data.  

Trends will be presented for all data, showing the effects of lignin on the tested physical and 

chemical properties of asphalt binders.   
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5. ANALYSIS 

5.1 Introduction 

 Analysis of the binder/co-product treatment combinations took place by analyzing 

each binder separately.  Each binder is divided into four sections: unaged high critical 

temperature, RTFO aged high critical temperature, PAV aged intermediate critical 

temperature, and PAV aged low critical temperature.  For each section, the lignin-containing 

co-products (A, B, and C) are analyzed to determine which combination has the most/least 

beneficial effect on each binder.  Each treatment combination is compared to the unmodified 

binder to determine if the resulting change in performance grade is significant. 

 For binders AAD-1 and AAM-1, co-product D is included in a separate analysis for 

all four critical temperature sections.  Co-product D is analyzed to determine if its effects are 

statistically different from the lignin-containing co-products.  This comparison is used to 

determine if the lignin in co-products A, B, and C provides any significant benefit to the 

binder’s high, intermediate, and low temperature properties.   

 After each binder is separately analyzed, all binder data is combined to determine if 

different binders behave differently with added co-product.  A summary of the high, 

intermediate, and low temperature performance grades of all binders concludes the 

performance testing analysis.  Subsequent sections analyze separation and binder/co-product 

chemical antioxidant effects.   

5.2 Performance Grades 

5.2.1 AAD-1 

 Binder AAD-1 was blended with three, six, nine, and twelve percent of co-products 

A, B, and C.  Co-products A, B, and C were analyzed to determine which combination has 
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the greatest effect on the binder.  AAD-1 was also blended with co-product D (carbohydrate 

filler with no lignin) at three, six, and nine percent to see if there is chemical activity of the 

lignin in the other three co-products and the binder.  AAD-1 was also tested without the 

addition of any co-products as a reference.  Each blend was tested in triplicate to provide a 

good measure of random error.  Statistical software was used to evaluate the differences 

between the treatment groups.   

5.2.1.1 Unaged high critical temperature 

First, the unaged blends were analyzed to see if there were any statistical differences 

among the treatment groups.  An analysis of variance (ANOVA) using the method of least 

squares was used for examination.  An ANOVA was formed evaluating three, six, nine, and 

twelve percent of co-products A, B, and C to determine the treatment combinations that 

would have the most beneficial effect on the binder.  For the unaged blends, a larger critical 

high temperature is beneficial.  A Type I error (α) of 0.05 was used for all statistical analysis.  

An α of 0.05 states that there is a five percent chance of rejecting the null hypothesis when it 

is in fact true.  The ANOVA produced an F-statistic with a corresponding p-value less than 

0.0001.  Since the p-value is less than α, then the null hypothesis of all treatment groups 

being equal can be rejected.  Therefore, there are statistical differences between the treatment 

groups. Effect tests were then performed to distinguish with what factors the differences lie.  

An F-statistic and a corresponding p-value were produced for each factor (co-product type 

and percent) and the interaction between the two factors (co-product type * amount of co-

product).  Both factors have p-values less than 0.0001 and the interaction effect has a p-value 

equal to 0.0064.  Therefore, all factors and interaction are significant. The model ANOVA 

and effects test are shown in Table 13.  
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Table 13. Model ANOVA and effect tests for unaged AAD-1 DSR data 

Error D.F. S.S. M.S. F ratio Prob > F Error D.F. S.S. M.S. F ratio Prob > F

Model 11 49.63 4.51 26.43 <.0001 % Co-prod. 3 18.67 6.22 36.46 <.0001

Error 24 4.10 0.17 -- -- Co-prod. type 2 5.78 2.89 16.94 <.0001

C. Total 35 53.73 -- -- -- Interaction 6 4.11 0.69 4.01 0.0064

Analysis of variance Effect tests

 

Means difference testing was used to evaluate between which treatment groups the 

differences exist.  A student-t least significant difference (LSD) was not used due to the large 

number of treatment groups.  For instance, with twelve treatment groups and an α equal to 

0.05, the test would have an overall error rate of 60.0 percent.  Tukey honest significant 

difference (HSD) testing is more accurate with larger amounts of comparisons.  α is the error 

rate for all comparisons, instead of a single comparison as with the LSD procedure.  For the 

amount of co-product factor, the nine and twelve percent treatment groups (levels) have a 

significantly larger unaged high critical temperature than the three and six percent treatment 

groups.  With the co-product type factor, the high critical temperature for co-product B is 

significantly larger than co-product s A and C.  There are significant interaction effects 

because three percent co-product A has a larger high critical temperature than six percent co-

product C, even though Tukey HSD testing shows that the six percent level is significantly 

larger than the three percent level.      

 Next, co-product D was compared with the other co-products using an ANOVA.  

Three, six, and nine percent of co-products A, B, C, and D were analyzed.  Significant 

differences were found among the treatment groups.  The effect tests illustrate differences 

between both factors, but no significant interaction effect. Tukey HSD testing indicates co-

products B and D are significantly larger than co-products A and C, but co-products B and D 

are not significantly different.  Also, the more co-product added, the greater the increase in 
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critical high temperature. These results are very similar to the previous analysis.  Co-product 

D behaves similar to lignin B in unaged AAD-1.  The model ANOVA and effect tests are 

shown in Table 14.   

Table 14. Model ANOVA and effect tests for unaged AAD-1 DSR data with co-product D 

Error D.F. S.S. M.S. F ratio Prob > F Error D.F. S.S. M.S. F ratio Prob > F

Model 11 44.01 4.00 21.05 <.0001 % Co-prod. 2 16.13 8.07 13.34 <.0001

Error 24 4.56 0.19 -- -- Co-prod. type 3 8.45 2.82 2.53 <.0001

C. Total 35 48.57 -- -- -- Interaction 6 1.94 0.32 4.04 0.1644

Analysis of variance Effect tests

 

Using paired t-tests with α equal to 0.05, all combinations of co-products A, B, and C 

were compared with the neat binder (no co-product added).  Each t-test produced a p-value 

less than α.  Therefore, all combinations of co-products A, B, and C with AAD-1 produce a 

significantly larger high critical temperature than the binder alone. Table 15 illustrates the p-

values for all treatment combinations. 

Table 15. P-values for paired t-tests for unaged AAD-1 DSR data 

Co-prod. 

(%)

Co-prod. 

type
Prob>|t|

Co-prod. 

(%)

Co-prod. 

type
Prob>|t|

3 A 0.0001 9 A 0.0001

3 B 0.0010 9 B 0.0001

3 C 0.0046 9 C 0.0001

6 A 0.0088 12 A 0.0001

6 B 0.0078 12 B 0.0002

6 C 0.0006 12 C 0.0001  

The addition of all co-products at all percentages positively benefits the unaged 

critical high temperature.  Generally, the more co-product added, the greater the increase in 

critical high temperature.  The increase in critical high temperature is caused by an increased 

stiffness of the binder.  The more co-product added, the greater the stiffening.  Co-product B 

causes the greatest amount of stiffening of the three lignins.    
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5.2.1.2 RTFO aged high critical temperature 

 The RTFO aged blends were analyzed the same as the unaged blends.  A larger 

RTFO aged high critical temperature is beneficial to the asphalt.  Significant differences were 

found with both factors by analyzing three, six, nine, and twelve percent of co-products A, B, 

and C.  Tukey HSD tests show that co-product B produces a significantly larger high critical 

temperature than co-products A and C.  Also, the twelve percent level produces a larger high 

critical temperature than the other levels. Generally, the more co-product added, the greater 

the high critical temperature.  The model ANOVA and effects tests are shown in Table 16.   

Table 16. Model ANOVA and effect tests for RTFO aged AAD-1 DSR data 

Error D.F. S.S. M.S. F ratio Prob > F Error D.F. S.S. M.S. F ratio Prob > F

Model 11 61.36 5.58 54.59 <.0001 % Co-prod. 3 22.04 7.35 71.92 <.0001

Error 24 2.45 0.10 -- -- Co-prod. type 2 6.79 3.40 33.24 <.0001

C. Total 35 63.81 -- -- -- Interaction 6 0.89 0.15 1.44 0.2393

Analysis of variance Effect tests

 

Co-product D was compared with the other co-products by analyzing three, six, and 

nine percent of co-products A, B, C, and D.  Co-product D has a significantly larger high 

critical temperature than co-product C, but is not significantly different than co-product A or 

B.  Co-product B is not significantly different than co-product D, but is larger than co-

products A and C.  Also, the more co-product added, the greater the high critical temperature.  

These results suggest that co-product D behaves no different from the other co-products after 

the blends have been short-term aged with a RTFO.  Table 17 illustrates the model ANOVA 

and effect tests.  

All treatment combinations of co-products A, B, and C were compared with the neat 

binder.  Only three percent of co-products A and C are not significantly different from the 
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binder.  All other treatment combinations possess a significantly larger RTFO aged high 

critical temperature than the neat binder.  T-test results are shown in Table 18.     

Table 17. Model ANOVA and effect tests for RTFO aged AAD-1 DSR data with co-product D 

Error D.F. S.S. M.S. F ratio Prob > F Error D.F. S.S. M.S. F ratio Prob > F

Model 11 47.07 4.28 17.27 <.0001 % Co-prod. 2 11.16 5.58 22.51 <.0001

Error 24 5.95 0.25 -- -- Co-prod. type 3 7.39 2.46 9.95 0.0002

C. Total 35 53.02 -- -- -- Interaction 6 7.33 1.22 4.93 0.0020

Analysis of variance Effect tests

 

Table 18. P-values for paired t-tests for RTFO aged AAD-1 DSR data 

Co-prod. 

(%)

Co-prod. 

type
Prob>|t|

Co-prod. 

(%)

Co-prod. 

type
Prob>|t|

3 A 0.0564 9 A 0.0004

3 B 0.0012 9 B 0.0001

3 C 0.4732 9 C 0.0016

6 A 0.0020 12 A 0.0004

6 B 0.0002 12 B 0.0002

6 C 0.0180 12 C 0.0026  

 The addition of co-products A, B, and C at all amounts caused an increase in the 

RTFO aged high temperature.  The co-product causes the binder to stiffen, thus increasing 

the RTFO aged critical high temperature. Generally, the more co-product added, the greater 

the increase in the critical high temperature.  Co-product B again provides the greatest 

stiffening effect.   

5.2.1.3 PAV aged intermediate critical temperature 

 The critical intermediate temperatures were analyzed similar to the critical high 

temperatures.  An ANOVA was produced from analyzing three, six, nine, and twelve percent 

of co-products A, B, and C.  The model ANOVA and effect tests (Table 19) show both 

factors are significant.   
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Table 19. Model ANOVA and effect tests for PAV aged AAD-1 DSR data 

Error D.F. S.S. M.S. F ratio Prob > F Error D.F. S.S. M.S. F ratio Prob > F

Model 11 12.26 1.11 12.83 <.0001 % Co-prod. 3 6.36 2.12 24.41 <.0001

Error 24 2.08 0.09 -- -- Co-prod. type 2 1.13 0.57 6.51 0.0050

C. Total 35 14.34 -- -- -- Interaction 6 0.64 0.11 1.23 0.3271

Analysis of variance Effect tests

 

Tukey HSD testing shows that the twelve percent level is significantly larger than the 

three and six percent levels.  Also, the nine percent level is significantly larger than the three 

percent level.  The nine and twelve percent levels and the three and six percent levels were 

not proven to be different.  So generally, the more lignin that is added, the more the 

intermediate critical temperature increases.  Co-products B and C are significantly larger than 

co-product A, while co-products B and C are not significantly different.   

 Differences are found with both factors when co-product D is included in the analysis 

(Table 20). Co-product D has the statistically greatest intermediate critical temperature of all 

four co-products.  The larger the intermediate critical temperature, the stiffer the asphalt, and 

therefore, the more the asphalt has aged.  Co-product D has the statistically largest 

intermediate critical temperature, so the absence of lignin caused the binder to age and/or 

stiffen more than the other samples.  This relationship suggests chemical antioxidant activity 

of co-products A, B, and C.    

Table 20. Model ANOVA and effect tests for PAV aged AAD-1 DSR data with co-product D 

Error D.F. S.S. M.S. F ratio Prob > F Error D.F. S.S. M.S. F ratio Prob > F

Model 11 24.04 2.19 23.62 <.0001 % Co-prod. 2 4.62 2.31 24.97 <.0001

Error 24 2.22 0.09 -- -- Co-prod. type 3 6.16 2.05 22.20 <.0001

C. Total 35 26.26 -- -- -- Interaction 6 0.51 0.09 0.92 0.5051

Analysis of variance Effect tests

 

All except four treatment combinations proved to be significantly different than the 

neat binder.  Table 21 illustrates the results of the paired t-tests.  Three percent of co-products 
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A, B, and C and nine percent co-product A are not significantly different from the 

unmodified binder AAD-1.   

Table 21. P-values for paired t-tests for PAV aged AAD-1 DSR data 

Co-prod. 

(%)

Co-prod. 

type
Prob>|t|

Co-prod. 

(%)

Co-prod. 

type
Prob>|t|

3 A 0.7824 9 A 0.0528

3 B 0.0536 9 B 0.0008

3 C 0.2420 9 C 0.0106

6 A 0.0434 12 A 0.0108

6 B 0.0056 12 B 0.0006

6 C 0.0182 12 C 0.0036  

A larger intermediate critical temperature is beneficial in warmer climates, while it is 

detrimental in cooler climates.  Therefore, the addition of lignin-containing co-products to 

AAD-1 can cause positive or negative effects.  The more co-product added, the greater the 

increase in intermediate service temperature, which would be more beneficial in warmer 

climates.  In cooler climates, the addition of co-product would have a negative effect by 

increasing the asphalts susceptibility to fatigue cracking.   

5.2.1.4 PAV aged low critical temperature 

The final step in analyzing binder AAD-1 is examining the low critical temperature.  

The treatment combinations were examined to see which produced the best and worst results.  

As previously mentioned, a smaller low critical temperature is better.  Analysis of the low 

critical temperatures was performed in a similar manner as the high and intermediate critical 

temperatures.  The low critical temperatures exhibited much more variation than the high and 

intermediate temperatures.  BBRs used to examine the asphalt/lignin blends have less 

precision than DSRs.  Therefore, it was more difficult to see statistical differences with BBR 

test data than DSR test data.  An ANOVA was produced by examining treatment 

combinations of three, six, nine, and twelve percent of co-products A, B, and C.  The model 
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ANOVA (Table 22) indicates no differences among any of the treatment groups.  The effects 

test further supports this with large p-values for all the factors and interactions.  However, it 

can be seen by comparing the treatment means that co-product B produces the highest low 

critical temperature, which is a negative effect. Also, the more co-product added, generally 

the larger the low critical temperature.  The least negative results can be seen from co-

products A and C at low levels.   

Table 22. Model ANOVA and effect tests for PAV aged AAD-1 BBR data 

Error D.F. S.S. M.S. F ratio Prob > F Error D.F. S.S. M.S. F ratio Prob > F

Model 11 6.79 0.62 1.50 0.1955 % Co-prod. 3 0.35 0.12 0.29 0.8354

Error 24 9.87 0.41 -- -- Co-prod. type 2 1.53 0.77 1.87 0.1766

C. Total 35 16.66 -- -- -- Interaction 6 2.24 0.37 0.91 0.5058

Analysis of variance Effect tests

 

Co-product D is also not significantly different than the other co-products.  The 

ANOVA produced from analysis of all co-products three, six, and nine percent show no 

significant differences among the treatment means (Table 23).  However, co-product D has 

the largest average of low critical temperatures than all of the co-products.  Co-product D has 

the worst effect on the binder.  This again supports the hypothesis that there are chemical 

interactions with the lignin in co-products A, B, and C and the binder.  Co-product D has the 

largest low critical temperature, which indicates it has oxidized more than the other treatment 

combinations.   Co-products A, B, and C all have negative effects, but they were less than co-

product D.  This shows the lignin may have possibly acted as an antioxidant and reduced the 

amount of oxidative aging on the binders.   

The binder alone demonstrated to be significantly different than all treatment 

combinations except six percent co-product C.  Table 24 illustrates the results of the 

individual paired t-tests of the neat binder with the treatment combinations.   
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Table 23. Model ANOVA and effect tests for PAV aged AAD-1 BBR data with co-product D 

Error D.F. S.S. M.S. F ratio Prob > F Error D.F. S.S. M.S. F ratio Prob > F

Model 11 13.74 1.25 2.25 0.0470 % Co-prod. 2 1.36 0.68 1.23 0.3110

Error 24 13.33 0.56 -- -- Co-prod. type 3 1.76 0.59 1.06 0.3861

C. Total 35 27.07 -- -- -- Interaction 6 2.84 0.47 0.85 0.5426

Analysis of variance Effect tests

 

Table 24. P-values for paired t-tests for PAV aged AAD-1 BBR data 

Co-prod. 

(%)

Co-prod. 

type
Prob>|t|

Co-prod. 

(%)

Co-prod. 

type
Prob>|t|

3 A 0.0226 9 A 0.0244

3 B 0.0494 9 B 0.0060

3 C 0.0068 9 C 0.0002

6 A 0.0344 12 A 0.0001

6 B 0.0008 12 B 0.0096

6 C 0.0654 12 C 0.0001  

 The addition of all co-products to AAD-1 causes an increase in the low critical 

temperature.  The lignins cause the binder to stiffen, thus increasing the low critical 

temperature.  All but one treatment combination is significantly different than the binder 

alone, while all the binder/co-product combinations are no different.  The addition of three 

percent co-product C had the least negative effect on the binder.   In general, the more lignin 

added, the greater the negative effect.   

5.2.2 AAM-1 

 Binder AAM-1 was blended with three, six, and nine percent of co-products A, B, 

and C.  Co-products A, B, and C were analyzed to determine which combination has the 

greatest effect on the binder.  AAM-1 was also blended with co-product D at three, six, and 

nine percent to examine the antioxidant ability of the lignin-containing co-products A, B, and 

C. AAD-1 was also tested without co-product modification.  

 

 



www.manaraa.com

 44 

5.2.2.1 Unaged high critical temperature 

Co-products A, B, and C were analyzed at three, six, and nine percent.  Table 25 

illustrates the results.  Significant differences are only found with the amount of co-product 

factor.  Tukey HSD testing concludes that the six and nine percent levels are significantly 

larger than the three percent level, while the six and nine percent levels are not significantly 

different.  So as was seen with AAD-1, the more co-product added, the greater the stiffening 

effect, and therefore the greater the increase in critical high temperature.  

Table 25. Model ANOVA and effect tests for unaged AAM-1 DSR data 

Error D.F. S.S. M.S. F ratio Prob > F Error D.F. S.S. M.S. F ratio Prob > F

Model 8 6.10 0.76 6.32 0.0006 % Co-prod. 2 2.88 1.44 11.93 0.0005

Error 18 2.17 0.12 -- -- Co-prod. type 2 0.42 0.21 1.74 0.2031

C. Total 26 8.28 -- -- -- Interaction 4 0.98 0.24 2.03 0.1338

Effect testsAnalysis of variance

 

 Co-product D was analyzed with co-products A, B, and C at three, six, and nine 

percent (Table 26).  Significant differences were found with the amount of co-product factor 

and the interaction term.  However, there are no significant differences with the type of co-

product factor.  Co-product D does not produce a statistically different unaged high critical 

temperature from the other three lignins.  

Table 26. Model ANOVA and effect tests for unaged AAM-1 DSR data with co-product D 

Error D.F. S.S. M.S. F ratio Prob > F Error D.F. S.S. M.S. F ratio Prob > F

Model 11 28.42 2.58 7.97 <.0001 % Co-prod. 2 8.65 4.32 13.34 0.0001

Error 24 7.78 0.32 -- -- Co-prod. type 3 2.46 0.82 2.53 0.0815

C. Total 35 36.20 -- -- -- Interaction 6 7.87 1.31 4.04 0.0061

Effect testsAnalysis of variance

 

 Paired t-tests revealed all treatment combinations, except six percent co-product A, 

are statistically different than the neat binder.  The measures for six percent co-product A 
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have larger than normal variation and accounts for the inability to see significant differences.  

The results are shown in Table 27. 

Table 27. P-values for paired t-tests for unaged AAM-1 DSR data  

Co-prod. 

(%)

Co-prod. 

type
Prob>|t|

Co-prod. 

(%)

Co-prod. 

type
Prob>|t|

Co-prod. 

(%)

Co-prod. 

type
Prob>|t|

3 A 0.0239 6 A 0.1232 9 A 0.0002

3 B 0.0189 6 B <.0001 9 B <.0001

3 C 0.0310 6 C 0.0007 9 C 0.0144  

The addition of co-products A, B, and C at all percentages to AAM-1 increases the 

unaged high critical temperature.  The trends are similar as to those seen with AAD-1.  

Generally, the more lignin-containing co-product added, the greater the increase in the 

unaged high critical temperature.   

5.2.2.2 RTFO aged high critical temperature 

 A model ANOVA was formed analyzing co-products A, B, and C at three, six, and 

nine percent.  Significant differences were found among the treatment groups.  The effect 

tests show significant differences only in the amount of co-product factor and interaction.  

Table 28 illustrates the model ANOVA and effect test. 

Table 28. Model ANOVA and effect tests for RTFO aged AAM-1 DSR data 

Error D.F. S.S. M.S. F ratio Prob > F Error D.F. S.S. M.S. F ratio Prob > F

Model 8 8.46 1.06 7.11 0.0003 % Co-prod. 2 3.16 1.58 10.61 0.0009

Error 18 2.68 0.15 -- -- Co-prod. type 2 0.08 0.04 0.27 0.7658

C. Total 26 11.14 -- -- -- Interaction 4 2.70 0.67 4.54 0.0104

Effect testsAnalysis of variance

 

Tukey HSD tests demonstrate that the six and nine percent levels are significantly larger than 

the three percent level, but the six and nine percent levels are not significantly different.  

There is significant interaction as the nine percent level does not always produce the largest 
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high critical temperature.  For lignin A, six percent produces a statistically larger high critical 

temperature than nine percent level.   

Co-product D was analyzed by creating an ANOVA with three, six, and nine percent 

of co-products A, B, C, and D.  The model ANOVA (Table 29) confirms significant 

differences between the treatment means, and the effects test illustrates that those differences 

are only in the amount of co-product factor.  There are no statistical differences between the 

four co-products.  This suggests that the lignin in co-products A, B, and C does not provide 

substantial benefit to the RTFO aged binder properties since co-product D behaves no 

differently with respect to the binder’s rheological properties.   

  Table 29. Model ANOVA and effect tests for RTFO aged AAM-1 DSR data with co-product D 

Error D.F. S.S. M.S. F ratio Prob > F Error D.F. S.S. M.S. F ratio Prob > F

Model 11 18.04 1.64 9.96 <.0001 % Co-prod. 2 5.99 3.00 18.20 <.0001

Error 24 3.95 0.16 -- -- Co-prod. type 3 1.23 0.41 2.48 0.0853

C. Total 35 21.99 -- -- -- Interaction 6 3.71 0.62 3.76 0.0089

Effect testsAnalysis of variance

 

Paired t-tests conclude some treatment combinations are significantly different from 

the neat binder.  Six and nine percent of co-products C and nine percent of co-product A are 

the two treatment combinations that are significantly different than the binder.  Table 30 

illustrates the results.   

Table 30. P-values for paired t-tests for RTFO aged AAM-1 DSR data 

Co-prod. 

(%)

Co-prod. 

type
Prob>|t|

Co-prod. 

(%)

Co-prod. 

type
Prob>|t|

Co-prod. 

(%)

Co-prod. 

type
Prob>|t|

3 A 0.2651 6 A 0.0993 9 A 0.0007

3 B 0.5806 6 B 0.5451 9 B 0.1805

3 C 0.3440 6 C 0.0046 9 C 0.0094  
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The addition of all amounts of all co-products increases the RTFO aged high critical 

temperature.  As with AAD-1, the more co-products that are added, the greater the increase is 

in the high critical temperature due to the stiffening of the unmodified binder.   

5.2.2.3 PAV aged intermediate critical temperature 

 A model ANOVA indicates significant differences within the treatment means.  

Effect tests confirm all factors and interaction are significant.  Table 31 illustrates the results.     

Table 31. Model ANOVA and effect tests for PAV aged AAM-1 DSR data 

Error D.F. S.S. M.S. F ratio Prob > F Error D.F. S.S. M.S. F ratio Prob > F

Model 8 96.27 12.03 31.49 <.0001 % Co-prod. 2 27.49 13.74 35.96 <.0001

Error 18 6.88 0.38 -- -- Co-prod. type 2 10.81 5.41 14.14 0.0002

C. Total 26 103.15 -- -- -- Interaction 4 33.98 8.50 22.23 <.0001

Effect testsAnalysis of variance

 

Both factors were analyzed using Tukey HSD means testing.  For the amount of co-product 

factor, the nine percent level is significantly larger than both the three and six percent level, 

while the three and six percent levels are not significantly different.  For the type of co-

product factor, co-products B and C are statistically larger than co-product A, but co-

products B and C are not significantly different.  Significant interaction is shown because of 

six percent lignin A having the lowest intermediate critical temperature of any of the 

combinations.   

 Co-product D was examined against the other three lignin-containing co-products 

using an ANOVA and effect test (Table 32).  All factors prove to be significant.  Tukey HSD 

means testing proves that co-product D has a significantly larger low critical temperature 

than the lignin-containing co-products A, B, and C.  This is the same effect as seen with 

binder AAD-1.  Since co-product D is an inert carbohydrate filler, it cannot act as an 
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Table 32. Model ANOVA and effect tests for PAV aged AAM-1 DSR data with co-product D 

Error D.F. S.S. M.S. F ratio Prob > F Error D.F. S.S. M.S. F ratio Prob > F

Model 11 160.41 14.58 32.06 <.0001 % Co-prod. 2 22.89 11.45 25.16 <.0001

Error 24 10.92 0.45 -- -- Co-prod. type 3 33.23 11.08 24.35 <.0001

C. Total 35 171.33 -- -- -- Interaction 6 41.41 6.90 15.17 <.0001

Effect testsAnalysis of variance

 

antioxidant by slowing oxidative aging.  Lignin-containing co-products A, B, and C have 

smaller intermediate critical temperatures, therefore they have undergone less oxidative 

aging.  This relationship suggests that the lignin in co-products A, B, and C is interacting 

with the binder by slowing oxidative aging.   

 T-tests (Table 33) prove all co-products are significantly different from the binder, 

except three percent co-products B and C.  Also, two of the treatment combinations have a 

significantly lower intermediate critical temperature than the binder alone (six and three 

percent lignin A).   

Table 33. P-values for paired t-tests for PAV aged AAM-1 DSR data 

Co-prod. 

(%)

Co-prod. 

type
Prob>|t|

Co-prod. 

(%)

Co-prod. 

type
Prob>|t|

Co-prod. 

(%)

Co-prod. 

type
Prob>|t|

3 A 0.0054 6 A 0.0161 9 A 0.0053

3 B 0.6309 6 B 0.0013 9 B 0.0007

3 C 0.0761 6 C 0.0032 9 C 0.0004  

 All treatment combinations, except three and six percent co-product A, cause an 

increase in the intermediate service temperature.  Generally, the more co-product added, the 

greater the increase in intermediate service temperature.  Combinations such as nine percent 

co-product B would work best in warmer climates, while combinations such as three percent 

co-product A would work best in cooler climates.   
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5.2.2.4 PAV aged low critical temperature 

 Analysis of the critical low temperature of three, six, and nine percent of co-products 

A, B, and C show significant differences among the treatment means.  Effect tests display 

significant differences with lignin type factor and interaction, but not in the amount of lignin.  

The model ANOVA and effects test are shown in Table 34.   

Table 34. Model ANOVA and effect tests for PAV aged AAM-1 BBR data 

Error D.F. S.S. M.S. F ratio Prob > F Error D.F. S.S. M.S. F ratio Prob > F

Model 8 7.35 0.92 4.02 0.0068 % Co-prod. 2 1.32 0.66 2.89 0.0819

Error 18 4.11 0.23 -- -- Co-prod. type 2 2.46 1.23 5.38 0.0147

C. Total 26 11.46 -- -- -- Interaction 4 5.84 1.46 6.40 0.0022

Effect testsAnalysis of variance

 

Tukey HSD testing reveals the only significant difference to be co-product A possessing a 

significantly larger response than co-product C.  Interaction effects can be seen by no 

specific amount of co-product having the largest low critical temperature.  For instance, six 

percent co-product A has the smallest response for co-product A, while six percent co-

product C has the largest response for co-product C.   

 Co-product D again had the largest average of low critical temperatures than the other 

three lignin-containing co-products.  The model ANOVA and effect tests (Table 35) indicate 

differences between the type of co-product and interaction effect when including co-product 

D in the analysis.  Again with the low critical temperature, the amount of co-product is not 

significant.  Tukey HSD testing demonstrates co-product D to produce significantly larger 

low critical temperatures than co-products B and C, but not co-product A.  This again 

suggests that the lignin in lignin-containing co-products A, B, and C provides benefit to the 

asphalt.  A lower critical low temperature indicates less oxidative aging.  Since co-products 
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A, B, and C have lower critical low temperatures than lignin D, they have undergone less 

oxidative aging.   

Table 35. Model ANOVA and effect tests for PAV aged AAM-1 BBR data with co-product D 

Error D.F. S.S. M.S. F ratio Prob > F Error D.F. S.S. M.S. F ratio Prob > F

Model 11 32.43 2.95 14.47 <.0001 % Co-prod. 2 0.80 0.40 1.97 0.1611

Error 24 4.89 0.20 -- -- Co-prod. type 3 6.34 2.11 10.37 0.0001

C. Total 35 37.32 -- -- -- Interaction 6 7.06 1.18 5.77 0.0008

Effect testsAnalysis of variance

 

Only one treatment combination is significantly different from the neat binder  

AAM-1.  Six percent co-product C is significantly larger than AAM-1.  Since lower low 

critical temperatures are generally better for the asphalt, six percent co-product C provides 

the least desirable response.  All other treatment combinations proved to not be statistically 

different from the binder alone.  Results of the paired t-tests are shown in Table 36.  

Table 36. P-values for paired t-tests for PAV aged AAM-1 BBR data 

Co-prod. 

(%)

Co-prod. 

type
Prob>|t|

Co-prod. 

(%)

Co-prod. 

type
Prob>|t|

Co-prod. 

(%)

Co-prod. 

type
Prob>|t|

3 A 0.1302 6 A 0.0708 9 A 0.3237

3 B 0.2301 6 B 0.2252 9 B 0.5506

3 C 0.5006 6 C 0.0405 9 C 0.4567  

Generally, the addition of co-products A, B, and C to AAM-1 causes an increase in 

the low critical temperature.  The co-products cause the binder to stiffen, thus increasing the 

low critical temperature.  All but one treatment combination is not significantly different than 

the neat binder.  The effect of the co-products on the low temperature properties of AAM-1 is 

negative; however, only one treatment group is significantly different from the neat binder.   
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5.2.3 Local Binder 

LB was blended with three, six, and nine percent of co-products A, B, and C.  Co-

products A, B, and C were analyzed to determine which combination has the greatest effect 

on the binder.  LB was also tested without the addition of any co-product as a reference.   

5.2.3.1 Unaged high critical temperature 

An ANOVA was formed analyzing three, six, and nine percent of co-products A, B, 

and C.  Both factors are significant as shown by the model ANOVA and effect tests (Table 

37). Tukey HSD testing was performed on the treatment groups of both factors.  For the co-

product type factor, the high critical temperature for co-products B and C are significantly 

larger than that of lignin A.  However, lignins B and C are not significantly different.  For the 

amount of lignin factor, all treatment groups are statistically different.  The nine percent level 

produces the largest high critical temperature, followed by the six percent level.  The three 

percent level has the statistically lowest high critical temperature.   

Table 37. Model ANOVA and effect tests for unaged LB DSR data 

Error D.F. S.S. M.S. F ratio Prob > F Error D.F. S.S. M.S. F ratio Prob > F

Model 8 21.54 2.69 31.06 <.0001 % Co-prod. 2 5.22 2.61 30.13 <.0001

Error 18 1.56 0.09 -- -- Co-prod. type 2 5.13 2.57 29.60 <.0001

C. Total 26 23.10 -- -- -- Interaction 4 0.82 0.20 2.36 0.0921

Effect testsAnalysis of variance

 

Paired t-tests were used to evaluate the treatment combinations versus the binder with 

no co-products added.  Table 38 illustrates the p-values for all individual t-tests.  All 

treatment combinations are significantly different from the neat binder.   

All treatment combinations were beneficial to the high critical temperature for LB.  

The trends are similar to the previous two binders.  The more co-product added, the greater 



www.manaraa.com

 52 

the increase in the response.  The most beneficial combination is the addition of nine percent 

co-product B.  The least beneficial combination was three percent of co-product A.   

Table 38. P-values for paired t-tests for unaged LB DSR data 

Co-prod. 

(%)

Co-prod. 

type
Prob>|t|

Co-prod. 

(%)

Co-prod. 

type
Prob>|t|

Co-prod. 

(%)

Co-prod. 

type
Prob>|t|

3 A 0.0166 6 A 0.0003 9 A 0.0025

3 B 0.0004 6 B <.0001 9 B <.0001

3 C 0.0041 6 C 0.0005 9 C <.0001  

5.2.3.2 RTFO aged  high critical temperature 

An ANOVA was performed considering all treatment groups.  Effect tests show the type of 

co-product factor and interaction are not significant, while the amount of co-product factor is 

significant.  The model ANOVA and effects tests are shown in Tables 39.     

Table 39. Model ANOVA and effect tests for RTFO aged LB DSR data 

Error D.F. S.S. M.S. F ratio Prob > F Error D.F. S.S. M.S. F ratio Prob > F

Model 8 4.03 0.50 6.62 0.0004 % Co-prod. 2 1.51 0.76 9.95 0.0012

Error 18 1.37 0.08 -- -- Co-prod. type 2 0.39 0.19 2.55 0.1058

C. Total 26 5.39 -- -- -- Interaction 4 0.78 0.20 2.58 0.0727

Effect testsAnalysis of variance

 

Tukey HSD testing indicates the nine percent level is significantly larger than the three 

percent level.  The six and nine percent levels and the three and six percent levels are not 

significantly different.  In general, the more co-products added, the greater the increase in the 

RTFO aged high critical temperature.  

 Paired t-tests were used to evaluate the treatment combinations versus the neat binder.  

Only six percent co-product A is not significantly different than the neat binder.  All other 

treatment combinations produce significantly larger responses than the neat binder. Table 40 

illustrates the t-test results. 
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Table 40. P-values for paired t-tests for RTFO aged LB DSR data 

Co-prod. 

(%)

Co-prod. 

type
Prob>|t|

Co-prod. 

(%)

Co-prod. 

type
Prob>|t|

Co-prod. 

(%)

Co-prod. 

type
Prob>|t|

3 A 0.0096 6 A 0.0709 9 A 0.0234

3 B 0.0443 6 B 0.0010 9 B 0.0001

3 C 0.0187 6 C 0.0007 9 C 0.0084  

All combinations of co-product with LB are beneficial for the RTFO aged high critical 

temperature.  As with the previously two analyzed binders, the trend shows that the more co-

product that is added, the greater is the stiffening, and therefore the greater is the increase in 

critical high temperature.  

5.2.3.3 PAV aged intermediate critical temperature 

An ANOVA and effect tests (Table 41) were done evaluating three, six, and nine 

percent of co-products A, B, and C.  Tukey HSD testing was performed on both factors.  Co-

product B has a statistically larger response than co-product A, while all other comparisons 

are not significantly different.  The only difference in the amount of co-product is between 

the three and nine percent levels.  The nine percent level is significantly larger than the three 

percent level.   

Table 41. Model ANOVA and effect tests for PAV aged LB DSR data 

Error D.F. S.S. M.S. F ratio Prob > F Error D.F. S.S. M.S. F ratio Prob > F

Model 8 1.89 0.24 6.33 0.0006 % Co-prod. 2 0.42 0.21 5.57 0.0131

Error 18 0.67 0.04 -- -- Co-prod. type 2 0.38 0.19 5.02 0.0186

C. Total 26 2.57 -- -- -- Interaction 4 0.05 0.01 0.33 0.8544

Effect testsAnalysis of variance

 

Paired t-tests (Table 42) were again used to evaluate the different treatment groups 

versus the binder with no added co-product.  All treatment groups except three and six 

percent co-product A have a significantly larger intermediate critical temperature than the 
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neat binder.  This suggests the addition of co-product significantly affects the intermediate 

temperature properties of LB. 

Table 42. P-values for paired t-tests for PAV aged LB DSR data 

Co-prod. 

(%)

Co-prod. 

type
Prob>|t|

Co-prod. 

(%)

Co-prod. 

type
Prob>|t|

Co-prod. 

(%)

Co-prod. 

type
Prob>|t|

3 A 0.0819 6 A 0.1043 9 A 0.0116

3 B 0.0070 6 B 0.0218 9 B 0.0002

3 C 0.0053 6 C 0.0016 9 C 0.0029  

 The addition of all combinations of co-product to LB creates an increase in the 

intermediate critical temperature.  This trend was also seen with both binders AAD-1 and 

AAM-1.  An increase in the intermediate critical temperature can be beneficial or 

detrimental, depending upon the climate where the asphalt is used.  In general, the more co-

product added, the greater the increase in the intermediate critical temperature.  Low amounts 

of co-product A seem to have no significant effect on the intermediate temperature 

properties.   

5.2.3.4 PAV aged low critical temperature 

 The model ANOVA suggests that there are no significant differences among the 

treatment groups for low temperature properties of LB. Larger variation between the 

measurements of the same treatment groups is the cause for the inability to notice statistical 

differences.  However, effect tests show that the amount of co-product factor is significant.  

Tukey HSD testing illustrates that the nine percent level produces a significantly larger low 

critical temperature than the three and six percent levels.  Table 43 illustrates the low critical 

temperature analysis.     
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Table 43. Model ANOVA effect tests for PAV aged LB BBR data 

Error D.F. S.S. M.S. F ratio Prob > F Error D.F. S.S. M.S. F ratio Prob > F

Model 8 7.74 0.97 2.30 0.0681 % Co-prod. 2 6.01 3.00 7.14 0.0052

Error 18 7.58 0.42 -- -- Co-prod. type 2 0.51 0.25 0.60 0.5581

C. Total 26 15.31 -- -- -- Interaction 4 1.46 0.37 0.87 0.5016

Effect testsAnalysis of variance

 

All combinations, except three percent co-product A, are significantly different than 

the neat binder.  Paired t-testing produces p-values smaller than α for all treatment 

combinations except three percent co-product A. Results are shown in Table 44.   

Table 44. P-values for paired t-tests for PAV aged LB BBR data 

Co-prod. 

(%)

Co-prod. 

type
Prob>|t|

Co-prod. 

(%)

Co-prod. 

type
Prob>|t|

Co-prod. 

(%)

Co-prod. 

type
Prob>|t|

3 A 0.0909 6 A 0.0302 9 A 0.0002

3 B 0.0141 6 B 0.0011 9 B 0.0011

3 C 0.0004 6 C 0.0243 9 C 0.0159  

All treatment combinations have low critical temperatures greater than the neat binder.  This 

effect in and of itself is negative, and all combinations except three percent co-product A 

prove to be significantly less beneficial than the binder.  Statistical analysis shows that the 

more co-product that is added, the greater the increase in critical low temperature.  The 

different lignin-containing co-products do not produce significantly different low critical 

temperatures.    

5.2.4 Local Polymer Modified Binder 

LPMB was blended with three, six, nine, and twelve percent of co-products A, B, and 

C.  Co-products A, B, and C were analyzed to determine which combination has the greatest 

effect on the binder.  LPMB was also tested without the addition of any co-product as a 

reference.   
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5.2.4.1. Unaged high critical temperature 

 An ANOVA was formed analyzing the critical high temperatures of three, six, nine, 

and twelve percent of co-products A, B, and C.  The model ANOVA reveals differences 

among treatment groups, while the effects test goes shows both factors and the interaction is 

significant.  Table 45 illustrates the results.   

Table 45. Model ANOVA effect tests for unaged LPMB DSR data  

Error D.F. S.S. M.S. F ratio Prob > F Error D.F. S.S. M.S. F ratio Prob > F

Model 11 27.16 2.47 40.86 <.0001 % Co-prod. 3 13.46 4.49 74.23 <.0001

Error 24 1.45 0.06 -- -- Co-prod. type 2 1.17 0.58 9.64 0.0008

C. Total 35 28.61 -- -- Interaction 6 3.46 0.58 9.55 <.0001

Analysis of variance Effect tests

 

Tukey HSD testing was performed on both factors.  Co-product B has significantly larger 

response than the other two co-products.  Co-products A and C are not statistically different.  

All amounts of co-product are significantly different.  The twelve percent level produces the 

statistically largest high critical temperature, followed by the nine, six, and finally the three 

percent level.  It can be concluded that the further addition of co-product increases the 

unaged high critical temperature.  There is significant interaction between the six and nine 

percent co-product C high critical temperatures.  With co-products A and B, the nine percent 

level is statistically larger than the six percent level.  However, with co-product C, the six 

percent level is statistically larger than the nine percent level.    

 Half of the combinations are significantly different than the binder with no co-

product.  Table 46 exhibits the p-values from the paired t-tests. The combinations shown in 

bold are not significantly different than the neat binder.  These results suggest that in lower 

amounts, the co-products do affect the high temperature properties of LPMB as much as the 
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previous three binders discussed.  This effect could be due to the presence of polymer in the 

binder, as the other three previously discussed binders do not contain binder.   

Table 46. P-values for paired t-tests for unaged LPMB DSR data 

Co-prod. 

(%)

Co-prod. 

type
Prob>|t|

Co-prod. 

(%)

Co-prod. 

type
Prob>|t|

3 A 0.6764 9 A 0.0648

3 B 0.0854 9 B 0.0018

3 C 0.6437 9 C 0.1071

6 A 0.3325 12 A 0.0069

6 B 0.0118 12 B 0.0009

6 C 0.0274 12 C 0.0162  

The addition of all types and amounts of lignin-containing co-products increase the high 

temperature properties of the local polymer-modified binder.  However, in lower quantities, 

the effect is not significant. This effect could be due to the presence of polymer in the binder.  

The general effect on the unaged high temperatures is the same as the other three previous 

binders.  The polymer and co-products do not seem to interact negatively.   

5.2.4.2 RTFO aged high critical temperature 

Analysis indicates significant differences between treatment groups.  Effect tests 

show differences (Table 47) between the amount of co-product factor and interaction, but not 

with the type of co-product factor. Tukey HSD testing shows that all levels for the amount of 

co-product are significantly different.  The twelve percent level has the largest high critical 

temperature, followed by the nine, six, and the three percent level.  The more co-product 

added, the larger the high critical temperature.  As the case with all binders, the co-products 

stiffen the binder (even with the presence of polymer), which causes the high critical 

temperature to increase.   
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Table 47. Model ANOVA effect tests for RTFO aged LPMB DSR data 

Error D.F. S.S. M.S. F ratio Prob > F Error D.F. S.S. M.S. F ratio Prob > F

Model 8 4.03 0.50 6.62 0.0004 % Co-prod. 2 1.51 0.76 9.95 0.0012

Error 18 1.37 0.08 -- -- Co-prod. type 2 0.39 0.19 2.55 0.1058

C. Total 26 5.39 -- -- -- Interaction 4 0.78 0.20 2.58 0.0727

Effect testsAnalysis of variance

 

 T-testing concludes that most treatment groups have a significantly different response 

than the binder without the addition of co-product.  Three percent of co-products A, B, and C 

and six percent of co-product A are not statistically different from the neat binder.  Basically, 

the lower amounts of co-product to not significantly affect the intermediate temperature 

properties of the binder. Table 48 illustrates the p-values of the t-tests.   

Table 48. P-values for paired t-tests for RTFO aged LPMB DSR data 

Co-prod. 

(%)

Co-prod. 

type
Prob>|t|

Co-prod. 

(%)

Co-prod. 

type
Prob>|t|

3 A 0.5871 9 A 0.0090

3 B 0.3531 9 B 0.0004

3 C 0.0600 9 C 0.0032

6 A 0.7731 12 A <.0001

6 B 0.0312 12 B <.0001

6 C 0.0010 12 C <.0001  

In summary, the addition of co-products to the LPMB causes an increase in stiffness that 

follows the same trends as the previous three binders.  The further addition of co-product 

causes the binder to stiffen, thus increasing the high critical temperature.  The more co-

product added, the greater the stiffening.  Twelve percent co-product B provides the greatest 

beneficial response, while three percent co-product A provides the least beneficial response.   

5.2.4.3 PAV aged intermediate critical temperature 

 Significant differences were found between both factors and the interaction.  The 

model ANOVA and effect tests are shown in Table 49.  Tukey HSD testing shows that the 

twelve percent level has a significantly larger response than the other three levels, while the 
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three, six, and nine percent levels are not significantly different.  Co-product B has a 

significantly larger response than co-product A and C, while co-products A and C are not 

significantly different.  The interaction is significant because the different co-products do not 

produce similar trends with different amount of co-product added.  

Table 49. Model ANOVA effect tests for PAV aged LPMB DSR data 

Error D.F. S.S. M.S. F ratio Prob > F Error D.F. S.S. M.S. F ratio Prob > F

Model 8 1.89 0.24 6.33 0.0006 % Co-prod. 2 0.42 0.21 5.57 0.0131

Error 18 0.67 0.04 -- -- Co-prod. type 2 0.38 0.19 5.02 0.0186

C. Total 26 2.57 -- -- -- Interaction 4 0.05 0.01 0.33 0.8544

Effect testsAnalysis of variance

 

 T-testing identifies that half of the twelve treatment groups are significantly different 

from the binder alone.  Table 50 illustrates the p-values produced from each of the t-tests.  

Table 50.  P-values from individual t-tests for PAV aged LPMB DSR data 

Co-prod. 

(%)

Co-prod. 

type
Prob>|t|

Co-prod. 

(%)

Co-prod. 

type
Prob>|t|

3 A 0.4890 9 A 0.7020

3 B <.0001 9 B 0.0002

3 C 0.5096 9 C 0.4928

6 A 0.6949 12 A <.0001

6 B <.0001 12 B <.0001

6 C 0.9532 12 C 0.0007  

In summary, all treatment combinations cause in increase in the intermediate service 

temperature.  Generally, the more co-product added, the greater the increase.  As said 

previously, this effect can be positive or negative depending upon the climate in which the 

asphalt is used.  The trend of increasing intermediate service temperature with the further 

addition of lignin-containing co-products is present with all four binders tested.   
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5.2.4.4 PAV aged low critical temperature 

 The ANOVA and effect tests (Table 51) indicate differences between both factors and 

interaction.  Tukey HSD testing shows that the twelve percent level possesses the statistically 

largest low critical temperature.  The six percent level is significantly larger than the three 

percent level, but not significantly different from the nine percent level.  The three and nine 

percent levels are not significantly different.  Co-product B has a significantly larger low 

critical temperature than the other two co-products, while co-products A and C are not 

significantly different.  The six and nine percent levels vary with their response trends with 

the different types of co-products; the cause of significant interaction effects.   

Table 51. Model ANOVA and effect tests for PAV aged LPMB BBR data 

Error D.F. S.S. M.S. F ratio Prob > F Error D.F. S.S. M.S. F ratio Prob > F

Model 8 7.74 0.97 2.30 0.0681 % Co-prod. 2 6.01 3.00 7.14 0.0052

Error 18 7.58 0.42 -- -- Co-prod. type 2 0.51 0.25 0.60 0.5581

C. Total 26 15.31 -- -- -- Interaction 4 1.46 0.37 0.87 0.5016

Effect testsAnalysis of variance

 

 Most of the treatment groups have significantly larger responses than the binder.   

Table 52 illustrates the results.  All groups except both three and nine percent co-products A 

and C are significantly larger than the low critical temperatures produced by the binder.   

Table 52.  P-values from individual t-tests for PAV aged LPMB BBR data 

Amount 

of lignin 

(%)

Lignin 

Type
Prob>|t|

Amount 

of lignin 

(%)

Lignin 

Type
Prob>|t|

3 A 0.2598 9 A 0.3316

3 B 0.0259 9 B 0.0138

3 C 0.4140 9 C 0.1841

6 A 0.0831 12 A 0.0033

6 B 0.0010 12 B 0.0004

6 C 0.0094 12 C 0.0006  
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In summary, all treatment groups have larger low critical temperatures than the binder.  As 

with the other three binders, the addition of the lignin-containing co-product causes an 

increase in the low critical temperature of the binder.  Generally, the more co-product added, 

the larger the increase.  At lower levels, some of the treatment combinations are not any 

different from the binder alone.   

5.2.5 Effect of Different Binders on Critical Temperatures 

 Each binder produces significant differences for the four critical temperatures 

previously analyzed: unaged high critical temperature, RTFO aged high critical temperature, 

PAV aged intermediate temperature, and PAV aged low critical temperature.  This should be 

expected as each binder possesses very significant different rheological properties.  However, 

it is important to attempt to discover any significant interactions between the different 

binders and the co-product treatment groups to see if certain co-product combinations 

perform differently in different binders.  Model ANOVAs were formed for each critical 

temperature by analyzing three, six, and nine percent of co-products A, B, and C with all four 

binders.  The results are shown in Table 53.   

Table 53. P-values for binder interaction for critical temperatures (Tc) 

Unaged 

high Tc

RTFO aged 

high Tc

PAV aged 

int. Tc

PAV aged 

low Tc

0.0020 0.0153 0.0010 0.1610  

It can be seen that all critical temperatures, except the PAV aged low critical 

temperature, have p-values less than α.  This means that there is significant interaction 

between the different binders and the different co-product treatment groups.  It can be 

concluded that not all binders behave similar with the addition of lignin-containing co-

products (except the low critical temperature).  Not only do different combinations of co-
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product produce significant differences with the critical temperatures, but the critical 

temperatures are also dependent upon which binder the co-product is being added. 

5.2.6 Performance Grade Summary 

 The following tables (54, 55, 56 and 57) present a summary of the performance grade 

changes for each binder with the addition of the lignin-containing co-products.  Presented in 

each table is the unaged and RTFO aged high temperatures, and PAV aged intermediate and 

low temperatures.  The changes in temperature from the neat binder are shown next to each 

temperature column.  Finally, the overall change in performance grade is calculated.  The 

overall change is the change in the lowest high critical temperature (unaged or RTFO aged) 

minus the change in the PAV aged low critical temperature. If the change of the high or low 

critical temperature is not significant as previously shown, than that difference used for 

calculation is zero.  All significant changes are shown in bold.  It can be seen in almost all 

cases for each binder that the addition of lignin-containing co-products significantly 

increases the performance grade depending upon the type and amount of co-product added.   

Table 54. Critical temperature (Tc) changes for AAD-1 

Co-

product 

(%)

Co-

product 

(type)

Unaged 

high Tc 

(°C)

∆ Tc

RTFO 

aged high 

Tc (°C)

∆ Tc

Pav aged 

int.Tc 

(°C)

∆ Tc

PAV 

aged low 

Tc (°C)

∆ Tc

Total sig. 

∆ PG 

range

12 A 64.8 2.5 67.9 2.5 18.5 1.2 -24.0 1.2 1.3

12 B 67.2 4.9 70.1 4.7 19.6 2.3 -23.1 2.1 2.8

12 C 64.5 2.2 67.2 1.8 18.5 1.2 -23.4 1.8 0.4

9 A 64.8 2.5 67.5 2.1 18.2 0.9 -23.6 1.6 0.9

9 B 66.6 4.3 69.3 3.9 19.0 1.7 -23.4 1.8 2.5

9 C 64.5 2.2 67.0 1.6 18.3 1.0 -23.7 1.5 0.7

6 A 64.5 2.2 66.9 1.5 18.0 0.7 -23.9 1.3 0.9

6 B 64.8 2.5 68.6 3.2 18.7 1.4 -22.6 2.6 -0.1

6 C 63.4 1.1 66.2 0.8 18.1 0.8 -23.9 1.3 1.1

3 A 63.7 1.4 65.8 0.4 17.3 0.0 -23.7 1.5 -0.1

3 B 64.8 2.5 67.5 2.1 18.1 0.8 -23.2 2.0 0.5

3 C 62.8 0.5 66.7 1.3 17.8 0.5 -24.2 1.0 -0.5

0 -- 62.3 0.0 65.4 0.0 17.3 0.0 -25.2 0.0 0.0  
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Tab1e 55. Critical temperature (Tc) changes for AAM-1 

Co-

product 

(%)

Co-

product 

(type)

Unaged 

high Tc 

(°C)

∆ Tc

RTFO 

aged high 

Tc (°C)

∆ Tc

Pav aged 

int.Tc 

(°C)

∆ Tc

PAV 

aged low 

Tc (°C)

∆ Tc

Total sig. 

∆ PG 

range

9 A 68.7 0.9 67.6 0.9 22.4 2.1 -14.9 0.2 0.9

9 B 69.8 2.0 67.2 0.5 22.9 2.6 -14.8 0.3 0.5

9 C 68.8 1.0 68.5 1.8 21.4 1.1 -15.2 -0.1 1.8

6 A 68.5 0.7 68.2 1.5 19.8 -0.5 -16.1 -1.0 1.5

6 B 69.3 1.5 66.9 0.2 22.0 1.7 -14.9 0.2 0.2

6 C 68.8 1.0 67.5 0.8 22.1 1.8 -14.7 0.4 0.4

3 A 68.5 0.7 66.9 0.2 18.6 -1.7 -14.0 1.1 0.2

3 B 68.5 0.7 66.8 0.1 20.6 0.3 -14.9 0.2 0.1

3 C 68.1 0.3 67.0 0.3 20.9 0.6 -15.2 -0.1 0.3

0 -- 67.8 0.0 66.7 0.0 20.3 0.0 -15.1 0.0 0.0  

Table 56. Critical temperature (Tc) changes for LB 

Co-

product 

(%)

Co-

product 

(type)

Unaged 

high Tc 

(°C)

∆ Tc

RTFO 

aged high 

Tc (°C)

∆ Tc

Pav aged 

int.Tc 

(°C)

∆ Tc

PAV 

aged low 

Tc (°C)

∆ Tc

Total sig. 

∆ PG 

range

9 A 70.4 1.5 71.9 0.8 23.9 0.4 -16.7 2.8 -1.3

9 B 72.2 3.3 72.4 1.3 24.6 1.1 -17.5 2.0 1.3

9 C 71.7 2.8 72.3 1.2 24.2 0.7 -17.4 2.1 0.7

6 A 69.9 1.0 71.4 0.3 23.9 0.4 -18.3 1.2 -0.2

6 B 71.9 3.0 72.5 1.4 24.3 0.8 -18.7 0.8 2.2

6 C 70.6 1.7 71.8 0.7 24.2 0.7 -17.9 1.6 0.1

3 A 69.3 0.4 71.6 0.5 23.7 0.2 -18.4 1.1 0.4

3 B 71.1 2.2 71.9 0.8 24.2 0.7 -18.1 1.4 0.8

3 C 70.7 1.8 71.4 0.3 23.9 0.4 -17.6 1.9 -0.1

0 -- 68.9 0.0 71.1 0.0 23.5 0.0 -19.5 0.0 0.0  

5.3 Separation Effects 

When stored at high temperatures, the lignin-containing co-products tend to 

physically separate from the binder.  The results from the solubility testing illustrates that the 

co-products do not completely form a solution with the binder, but rather a physical mixture.  

When the blends are stored at high temperature (155°C), the less dense binder physically 

separates from the denser lignin-containing co-product that has been coated with binder.  

Generally, the longer the blends are stored, the more separation occurs.  Also, the more co-  
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Table 57. Critical temperature (Tc) changes for LPMB 

Co-

product 

(%)

Co-

product 

(type)

Unaged 

high Tc 

(°C)

∆ Tc

RTFO 

aged high 

Tc (°C)

∆ Tc

Pav aged 

int.Tc 

(°C)

∆ Tc

PAV 

aged low 

Tc (°C)

∆ Tc

Total sig. 

∆ PG 

range

12 A 67.7 5.4 71.8 5.1 22.4 2.3 -19.6 2.4 3.0

12 B 68.7 6.4 72.5 5.8 22.7 2.6 -19.1 2.9 3.5

12 C 66.7 4.4 71.2 4.5 22.2 2.1 -18.8 3.2 1.2

9 A 66.7 4.4 67.7 1.0 20.1 0.0 -21.2 0.8 3.6

9 B 68.6 6.3 69.3 2.6 21.8 1.7 -19.6 2.4 3.9

9 C 67.1 4.8 69.1 2.4 20.2 0.1 -21.5 0.5 4.3

6 A 66.4 4.1 66.8 0.1 20.2 0.1 -20.9 1.1 3.0

6 B 66.7 4.4 68.1 1.4 21.9 1.8 -19.8 2.2 2.2

6 C 65.8 3.5 68.4 1.7 20.2 0.1 -20.3 1.7 3.5

3 A 66.1 3.8 66.4 -0.3 20.2 0.1 -21.5 0.5 0

3 B 67.2 4.9 67.1 0.4 21.9 1.8 -20.1 1.9 0

3 C 65.9 3.6 67.3 0.6 20.2 0.1 -21.7 0.3 0

0 -- 62.3 0.0 66.7 0.0 20.1 0.0 -22.0 0.0 0  

products added, the larger the separation effects of the blends.  The separation effects are also 

co-product type and binder dependent, which can be seen in the following analysis.   

5.3.1 Effect of Different Lignins 

 All co-products (A, B, C, and D) were mixed with AAD-1 to see which co-product 

had the greatest susceptibility to separation.  Figure 9 illustrates the results of the test.  It can 

be seen all co-products separate more as time progresses.  Co-product B has the largest 

separation effects, while co-product A has the smallest.  Co-product A is preferred since 

separation from the binder would cause the least potential problems with handling and 

transport.  Co-product A was selected for further analysis by analyzing different amounts of 

co-product A.   

5.3.2 Effect of Amount of Lignin 

 Co-product A was added to AAD-1 at zero, three, six, and nine percent.  The same 

testing procedure was used.  Figure 10 illustrates the results. Notice how the further addition 

of co-product causes an increase in the amount of separation.  Also, as time progresses, the 
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separation effects increase.  The viscosity differences are almost thirty percent with the 

addition of nine percent co-product A.  It can be concluded that the more co-product added, 

the greater the separation effects.   

5.3.3 Effect of Binder Type 

 All four binders were combined with co-product A at six percent to determine which 

binder has the greatest separation effects.  Figure 9 illustrates the results.  The local binder 

(LB) without polymer has the greatest separation effects, while AAM-1 had the smallest 

effects.  The same trend can be observed that separation increases with time.  The different 

separation effects are likely attributed to binder chemistry and physical properties.  The 

combination with the least separation effects is six percent lignin A with AAM-1.   

10.0

20.0

30.0

40.0

50.0

60.0

6 12 18 24 30 36 42 48

Time (hours)

S
ep

a
r
a

ti
o
n

 (
%

)

Lignin A Lignin B Lignin C Lignin D

 

Figure 9. Separation of AAD-1 with all co-products at nine percent 
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Figure 10. Separation of AAD-1 with co-product A at zero, three, six, and nine percent 
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Figure 11. Separation of all binders with nine percent co-product A 
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5.4 Oxidation Testing 

5.4.1 Carbonyl Content 

Carbonyl functional groups are present in carboxylic acids, ketones, and anhydrides, 

all of which are products of asphalt binder oxidation. The results of the oxidation testing 

show conflicting results (Figure 12).  For binder AAD-1, the addition of all three co-products 

causes an increase in carbonyl groups. Also, the more of each co-product added, generally 

the greater the increase in the carbonyl content.  With binder AAM-1, three percent of co-

products A and B and nine percent of A and C cause an increase in the carbonyl content,  
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 Figure 12. Carbonyl contents of select binder/co-product blends 

while three percent co-product C and nine percent co-product B cause a very slight decrease.  

With binder LB, the addition of three percent of co-products A, B, and C and nine percent 

co-product B and C actually cause a decrease in the carbonyl content, while only nine percent 
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of A causes a very slight increase.  The results of the three binders show no general trends 

with the carbonyl content.  The results are binder specific.  Generally, the addition of lignin-

containing co-products to binders AAD-1 and AAM-1 increases the carbonyl content.  This 

trend suggests more oxidative aging.  The opposite occurs with binder LB.  The addition of 

lignin-containing co-products generally decreases the carbonyl content.   

5.4.2 Sulfoxide Content 

The sulfoxide testing produced opposite results than the carbonyl testing.  Figure 13 

illustrates the results from sulfoxide testing with FTIR.  With binder AAM-1, the addition of  
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Figure 13. Sulfoxide contents of select binder/co-product blends 

all co-products at all levels caused a decrease in the sulfoxide content.  Also, the more of 

each co-product added, the greater the decrease in sulfoxides.  With AAD-1, the addition of 

co-products A and B at three percent cause a decrease in the sulfoxide content.  However, 
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when co-products A and B are added at the nine percent level, the sulfoxide content 

increases.  With co-product C, the three percent addition causes a sulfoxide increase, while at 

the nine percent level, the sulfoxide content decreases.  These results suggest different 

chemical interactions with the different co-products.  Finally, with binder LB, the sulfoxide 

content is increased with all co-products at the three percent level, while at nine percent, the 

sulfoxide content decreases (except with co-product B).   
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6. CONCLUSIONS 

6.1 Project Summary  

 Asphalt oxidation is the primary cause of long-term pavement failure.  This study 

investigates the use of a natural antioxidant for use in asphalt binder.  Lignin-containing co-

products from wet-mill ethanol production were added to asphalt binder to evaluate the co-

products’ effects on the rheological properties of the binder.  The lignin-containing co-

products stiffened the binder at all stages of aging.  The result of stiffening was an 

improvement to the high temperature properties, with a worsening to the low temperature 

properties.  However, with many asphalt binder/co-product combinations, the high 

temperature performance grade was increased significantly, while the decrease in the low 

temperature performance grade was small and/or not significant.  This general widening of 

the continuous performance grade is beneficial to the binder and suggests some antioxidant 

activity of the lignin with the binder.  The testing of co-product D (no lignin added) supports 

the idea that there is beneficial antioxidant activity since samples with co-product D aged 

significantly more than the samples with lignin.  FTIR testing also indicates some antioxidant 

effects by the reduction in some of the various chemical aging products, which are binder and 

co-product dependent.       

6.2 Research Findings  

The addition of lignin-containing co-products to asphalt binder causes significant 

rheological changes depending upon the binder and the type and amount of co-product 

added.  Each binder tested produced differing results, although general trends were noticed 

for all binders.  The overall trend is a stiffening of the binder.  The stiffening occurs at all 

stages of aging and affects the high, intermediate, and low temperature properties of the 
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binders. The stiffening causes improvement to the high temperature properties with the 

further addition of co-product.  However, the addition of co-product slightly worsens the low 

temperature properties.  The overall effect is a general widening of the performance grade 

scale.  The temperature scale widening is co-product type and amount and asphalt binder 

source specific.   

6.2.1 Asphalt High Temperature Properties 

The high temperature properties of the binders are improved with the addition of co-

product.  The data shows that with all binders the high critical temperature is increased with 

the further addition of co-product.  A larger high critical temperature is beneficial because a 

binder is less susceptible to rutting.  The stiffer the asphalt, the greater the increase in the 

high critical temperature, and the less vulnerable the binder is to rutting.  All binders 

demonstrated similar behaviors.  In general, co-product B provided the greatest change in 

high critical temperature, while co-products A and C provided significantly less of a change 

in some of the treatment combinations.  With all binders, the larger amounts of co-product 

provided significantly larger changes than the smaller amounts.  Most asphalt binder/co-

product blends cause significant improvement over the neat binders.  Overall, larger amounts 

of co-product (especially co-product B) significantly improve a binder’s high temperature 

properties by increasing the high temperature performance grade.   

6.2.2 Asphalt Intermediate Temperature Properties  

The intermediate temperature properties are significantly changed with the addition of 

lignin-containing co-products.  The intermediate critical temperature predicts how asphalt 

will behave at normal operating temperatures.  A larger intermediate critical temperature 

suggests an asphalt is more susceptible to fatigue cracking at cooler temperatures.  As with 
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the high temperature properties, a larger intermediate critical temperature indicates a stiffer 

asphalt binder.  So a larger intermediate critical temperature is useful in warmer climates, and 

detrimental in cooler climates.  As with the high temperature properties, the more co-product 

added, the greater the increase in the intermediate critical temperature.  Also, co-product B 

generally provides the greatest stiffening effect, while co-products A and C provide less of an 

effect.  Larger amounts of added co-product produce significantly different intermediate 

temperatures than the binders with no co-product; while in general, smaller amounts are not 

significantly different from the neat binders.  Overall, larger amounts of co-product 

(especially co-product B) stiffen an asphalt binder significantly and change the intermediate 

temperature properties.  Larger amounts provide a significant negative effect to the binder, 

while some smaller combinations are not significantly different than the neat binders.   

6.2.3 Asphalt Low Temperature Properties  

The low temperature properties of asphalt binder are generally negatively affected by 

the addition of lignin-containing co-products.  The co-products stiffen the binders, thus 

making them more susceptible to thermal cracking.  The stiffening effect can be seen from 

the increase in the low critical temperatures.  In general, the more co-product added, the 

greater the increase in the low critical temperature.  Co-product B provides a significantly 

greater effect than co-products A and C with all binders.  With some of the binders, lower 

amounts of co-products A and C do not produce a significantly different response than the 

neat binders.  This same effect is seen with the high and intermediate service temperature 

properties. Overall, larger amounts of co-product (especially co-product B) negatively affect 

the low temperature properties of asphalt binder, while most combinations with small 

amounts of co-product do not necessarily produce significantly changes.  
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6.2.4 Separation Effects  

 The lignin-containing co-products have the tendency to separate from the binders 

when stored at high temperatures for long periods of time.  The trends developed from the 

data show that the longer the binders are heated without being stirred, the more the co-

products separate.  When the lignin-containing co-products are added to the asphalt, the 

asphalt conglomerates with the co-product, causing an increase in the density of the blends.  

Of all the co-products, co-product A showed the least separation, with co-product B 

separating the most.  Also, the more co-product added, the greater the potential for 

separation.  Each binder also demonstrated differing separation effects, with AAM-1 

separating the least, and the local binder separating the most.  There are many variables 

which contribute to these differences, most of which being binder/co-product physical and 

chemical properties.  In general, the more co-products added, and the longer the blends are 

stored in a hot environment, the more the co-products separate from the binder.  The results 

of the solubility testing show that the lignin-containing co-products are not substantially 

soluble in asphalt binder.     

6.2.5 Oxidation Effects  

 Testing co-product D (carbohydrate filler with no lignin) suggests that the lignin in 

co-products A, B, and C provides antioxidant benefit to the intermediate and low temperature 

properties of the asphalts. The results show that blends with co-product D were significantly 

different than most other treatment combinations.  In many cases, the intermediate and low 

critical temperatures of co-product D blends were significantly higher than with the other 

three lignin-containing co-products.  The critical temperatures were higher because the co-

product D blends oxidized and stiffened more than the other three co-products with lignin. 
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Co-product D blends underwent more oxidative aging than the other three co-products as co-

product D contains no antioxidant.  Therefore, it is suggested that the lignin in co-products A, 

B, and C provide some anti-aging effects.    

 FTIR testing supports the hypothesis that there is some antioxidant activity of the 

lignin and the asphalt.  The chemical reactions were binder/co-product specific.  With 

binders AAM-1 and AAD-1, the addition of lignin-containing co-product caused a general 

increase in the carbonyl contents, and a general decrease in the sulfoxide contents.  Carbonyl 

groups and sulfoxide groups are both products of oxidative aging in asphalt binder.  With 

binders AAD-1 and AAM-1, the lignin possibly acted as an antioxidant and caused a 

decrease in the sulfoxide content.  However, the other materials in the co-products (cellulose 

and hemi-cellulose) may have caused the binders to accelerate aging, or they could be acting 

as fillers.   With binder LB, the opposite occurred, with a general increase in sulfoxide 

content and a decrease in carbonyl content.  In general, the results of the FTIR show 

chemical interactions between the co-products and binders suggesting antioxidant activity of 

the lignin-containing co-products.   

6.3 Recommendations 

 The addition of lignin-containing co-products to different asphalt binders can benefit 

the overall properties of the asphalt depending upon the type and amount of co-product 

added.  Generally, the more co-product added, the greater the stiffening effect.  The 

stiffening effect benefits the high temperature properties, but worsens the low temperature 

properties.   

Due to the research findings, three to nine percent of co-product A, B, or C would 

provide benefit to the asphalt binders studied.  Each binder reacted differently with the 
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different co-products, so each binder has a different optimal combination of co-product. 

Table 58 illustrates the optimal combinations for each binder and the corresponding total 

increase in the performance grade range.  The effects of the co-products are dependent upon 

the binder used, so using different binders could create different effects.   

Table 58. Optimal co-product combinations for different binders 

Binder
Optimum co-product 

combination

Overall increase in 

performance grade range (°C)

AAD-1 9% B 2.5

AAM-1 9% C 1.8

LB 6% B 2.2

LPMB 9% C 4.3  

 Due to the separation effects present when the binder/co-products blends are stored at 

high temperatures, it is recommended to use a recirculation pump system to keep the 

binder/co-products in a continuously homogenous blend. Other possible scenarios are to mix 

the co-products in with the binder just before it is mixed with aggregate during construction, 

or to mix the co-products simultaneously with the aggregate. 

6.4 Final Remarks and Future Work 

Even though the co-products stiffen the binders and increase the performance grades, 

they could provide a great benefit to the industry by simply acting as a renewable alternative 

for asphalt binder.  With the price of oil increasing and the world’s energy demand 

increasing, asphalt binder will start to become more of a commodity than a waste product of 

the oil refining industry.  Since over 500 millions tons of hot-mix asphalt is produced 

annually (Roberts et al. 1996), having a product that could extend the asphalt binder supply 

would be a great advantage.  Also, the lignin-containing products would make asphalt more 

environmentally friendly, making the pavements “green pavements.”   This research showed 

co-products from the ethanol industry could provide benefit to the asphalt industry.   
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Future research needs to be performed with hot-mix asphalt containing lignin 

modified binder.  Mix design and performance testing will evaluate how the binder behaves 

when combined with aggregate.  Moisture sensitivity testing should be performed on 

binder/co-product blends. Eventual test sections could be constructed and tested with the 

optimal mix designs.  Future research should also be performed on the best possible method 

to blend the co-product into the asphalt to ensure separation effects are not as much of a 

concern.   

Other sources of lignin could also provide benefit to asphalt binder.  There are other 

biofuels that produce lignin in large quantities as co-products.  Bio-oil and cellulosic ethanol 

production both produce large amounts of lignin that would readily be available for use in 

asphalt pavements.  Similar research could be performed on these sources of lignin to 

evaluate their ability to be a successful asphalt binder modifier.   
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APPENDIX 

Table 59. AAD-1 unaged DSR data 
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58 12 A 2.221 9 B 2.876 6 B 2.360 3 B 2.150

58 12 A 2.122 9 B 2.776 6 B 1.984 3 B 2.338

58 12 A 2.267 9 B 2.591 6 B 2.370 3 B 2.182

64 12 A 1.076 9 B 1.399 6 B 1.156 3 B 1.035

64 12 A 1.042 9 B 1.334 6 B 0.964 3 B 1.144

64 12 A 1.098 9 B 1.264 6 B 1.161 3 B 1.060

70 12 A 0.557 9 B 0.703 6 B 0.580 3 B 0.527

70 12 A 0.541 9 B 0.675 6 B 0.489 3 B 0.578

70 12 A 0.567 9 B 0.649 6 B 0.591 3 B 0.538

58 12 B 2.968 9 C 2.230 6 C 1.872 3 C 1.735

58 12 B 2.880 9 C 2.110 6 C 1.953 3 C 1.748

58 12 B 3.009 9 C 2.134 6 C 1.937 3 C 1.777

64 12 B 1.473 9 C 1.081 6 C 0.905 3 C 0.842

64 12 B 1.412 9 C 1.022 6 C 0.945 3 C 0.853

64 12 B 1.444 9 C 1.029 6 C 0.939 3 C 0.872

70 12 B 0.740 9 C 0.552 6 C 0.442 3 C 0.432

70 12 B 0.711 9 C 0.523 6 C 0.461 3 C 0.451

70 12 B 0.741 9 C 0.521 6 C 0.435 3 C 0.450

58 12 C 2.089 9 D 2.604 6 D 2.291 3 D 2.183

58 12 C 2.086 9 D 2.662 6 D 2.462 3 D 2.219

58 12 C 2.073 9 D 2.612 6 D 2.417 3 D 2.253

64 12 C 1.037 9 D 1.312 6 D 1.102 3 D 1.057

64 12 C 1.058 9 D 1.331 6 D 1.150 3 D 1.084

64 12 C 1.017 9 D 1.295 6 D 1.214 3 D 1.099

70 12 C 0.544 9 D 0.679 6 D 0.587 3 D 0.549

70 12 C 0.543 9 D 0.768 6 D 0.633 3 D 0.561

70 12 C 0.534 9 D 0.668 6 D 0.622 3 D 0.566

58 9 A 2.322 6 A 2.069 3 A 1.911 0 -- 1.648

58 9 A 2.342 6 A 2.010 3 A 1.948 0 -- 1.700

58 9 A 2.264 6 A 2.405 3 A 2.024 0 -- 1.669

64 9 A 1.051 6 A 1.023 3 A 0.949 0 -- 0.798

64 9 A 1.012 6 A 0.997 3 A 0.967 0 -- 0.814

64 9 A 1.080 6 A 1.168 3 A 0.991 0 -- 0.814

70 9 A 0.514 6 A 0.487 3 A 0.478 0 -- 0.399

70 9 A 0.553 6 A 0.512 3 A 0.465 0 -- 0.402

70 9 A 0.566 6 A 0.600 3 A 0.454 0 -- 0.394  
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Table 60. AAD-1 RTFO aged DSR data 
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58 12 A 7.388 9 B 8.695 6 B 7.900 3 B 6.944

58 12 A 7.009 9 B 8.556 6 B 7.918 3 B 7.105

58 12 A 7.262 9 B 8.477 6 B 8.350 3 B 6.547

64 12 A 3.555 9 B 4.164 6 B 3.659 3 B 3.322

64 12 A 3.344 9 B 4.097 6 B 3.764 3 B 3.404

64 12 A 3.492 9 B 4.040 6 B 3.974 3 B 3.125

70 12 A 1.765 9 B 2.059 6 B 1.819 3 B 1.671

70 12 A 1.649 9 B 2.059 6 B 1.875 3 B 1.707

70 12 A 1.743 9 B 1.999 6 B 1.950 3 B 1.610

58 12 B 8.405 9 C 6.798 6 C 5.854 3 C 5.620

58 12 B 8.443 9 C 6.304 6 C 5.737 3 C 5.421

58 12 B 9.054 9 C 6.505 6 C 6.128 3 C 5.511

64 12 B 4.420 9 C 3.242 6 C 2.805 3 C 2.712

64 12 B 4.346 9 C 3.013 6 C 2.745 3 C 2.543

64 12 B 4.328 9 C 3.109 6 C 2.921 3 C 2.602

70 12 B 2.149 9 C 1.587 6 C 1.393 3 C 1.421

70 12 B 2.412 9 C 1.495 6 C 1.357 3 C 1.205

70 12 B 2.132 9 C 1.540 6 C 1.436 3 C 1.314

58 12 C 6.027 9 D 6.916 6 D 5.505 3 D 5.340

58 12 C 6.290 9 D 6.678 6 D 4.201 3 D 7.316

58 12 C 6.222 9 D 6.742 6 D 5.330 3 D 7.235

64 12 C 3.341 9 D 3.118 6 D 2.552 3 D 2.479

64 12 C 3.213 9 D 3.169 6 D 1.980 3 D 3.368

64 12 C 2.984 9 D 3.210 6 D 2.485 3 D 3.387

70 12 C 1.648 9 D 1.572 6 D 1.226 3 D 1.207

70 12 C 1.623 9 D 1.584 6 D 0.980 3 D 1.664

70 12 C 1.512 9 D 1.601 6 D 1.262 3 D 1.706

58 9 A 6.542 6 A 6.235 3 A 5.592 0 -- 5.475

58 9 A 6.729 6 A 6.240 3 A 5.644 0 -- 5.281

58 9 A 6.839 6 A 6.586 3 A 5.658 0 -- 5.238

64 9 A 3.216 6 A 3.008 3 A 2.682 0 -- 2.635

64 9 A 3.281 6 A 3.013 3 A 2.629 0 -- 2.556

64 9 A 3.350 6 A 3.188 3 A 2.741 0 -- 2.514

70 9 A 1.608 6 A 1.507 3 A 1.341 0 -- 1.330

70 9 A 1.649 6 A 1.515 3 A 1.324 0 -- 1.226

70 9 A 1.698 6 A 1.604 3 A 1.370 0 -- 1.270  
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Table 61. AAD-1 PAV aged DSR data 
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16 12 A 7321 9 B 7340 6 B 7275 3 B 6179

16 12 A 7245 9 B 7414 6 B 6768 3 B 6808

16 12 A 7031 9 B 7199 6 B 6927 3 B 6654

19 12 A 4099 9 B 5044 6 B 4992 3 B 4235

19 12 A 4456 9 B 5123 6 B 4627 3 B 4723

19 12 A 4256 9 B 5021 6 B 4810 3 B 4585

22 12 A 3738 9 B 3401 6 B 3367 3 B 2865

22 12 A 3335 9 B 3502 6 B 3122 3 B 3171

22 12 A 2760 9 B 3359 6 B 3288 3 B 3082

16 12 B 7825 9 C 6854 6 C 6927 3 C 7138

16 12 B 8117 9 C 6873 6 C 6874 3 C 6215

16 12 B 7814 9 C 6541 6 C 6674 3 C 6124

19 12 B 5448 9 C 4948 6 C 4402 3 C 4206

19 12 B 5658 9 C 4751 6 C 4561 3 C 4472

19 12 B 5228 9 C 4561 6 C 4120 3 C 3653

22 12 B 3722 9 C 2849 6 C 2288 3 C 2986

22 12 B 3864 9 C 3029 6 C 2824 3 C 2752

22 12 B 3558 9 C 2811 6 C 3149 3 C 2756

16 12 C 7012 9 D 2713 6 D 2555 3 D 2277

16 12 C 7129 9 D 2823 6 D 2429 3 D 2428

16 12 C 7288 9 D 2802 6 D 2491 3 D 2527

19 12 C 4810 9 D 3958 6 D 3749 3 D 3323

19 12 C 4862 9 D 4136 6 D 3600 3 D 3562

19 12 C 4623 9 D 4146 6 D 3598 3 D 3723

22 12 C 2849 9 D 5743 6 D 5354 3 D 4824

22 12 C 3029 9 D 6001 6 D 5310 3 D 5189

22 12 C 2811 9 D 5983 6 D 5356 3 D 5423

16 9 A 7149 6 A 6600 3 A 5866 0 -- 5851

16 9 A 7024 6 A 6855 3 A 5882 0 -- 6212

16 9 A 6925 6 A 6466 3 A 5798 0 -- 5722

19 9 A 4883 6 A 4479 3 A 3998 0 -- 3981

19 9 A 4173 6 A 4125 3 A 4004 0 -- 4224

19 9 A 3879 6 A 3964 3 A 4114 0 -- 3924

22 9 A 3274 6 A 2981 3 A 2671 0 -- 2786

22 9 A 2796 6 A 2787 3 A 2693 0 -- 2827

22 9 A 2618 6 A 2920 3 A 2992 0 -- 2631  
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Table 62. AAD-1 PAV aged BBR data 
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-12 12 A 131.0 0.309 9 B 113.0 0.321 6 B 126.0 0.301

-12 12 A 142.0 0.323 9 B 118.0 0.307 6 B 136.0 0.309

-12 12 A 135.0 0.315 9 B 145.0 0.321 6 B 124.0 0.305

-18 12 A 267.0 0.282 9 B 292.0 0.244 6 B 266.0 0.245

-18 12 A 234.0 0.253 9 B 252.0 0.253 6 B 291.0 0.255

-18 12 A 256.0 0.271 9 B 324.0 0.252 6 B 272.0 0.264

-12 12 B 145.0 0.321 9 C 243.0 0.237 6 C 272.0 0.228

-12 12 B 135.0 0.312 9 C 266.0 0.253 6 C 216.0 0.260

-12 12 B 141.0 0.302 9 C 249.0 0.254 6 C 243.0 0.246

-18 12 B 294.0 0.248 9 C 138.0 0.325 6 C 123.0 0.319

-18 12 B 289.0 0.255 9 C 133.0 0.320 6 C 127.0 0.337

-18 12 B 262.0 0.247 9 C 134.0 0.318 6 C 113.0 0.321

-18 12 C 208.0 0.250 9 D 73.4 0.358 6 D 69.2 0.374

-18 12 C 241.0 0.270 9 D 78.5 0.390 6 D 65.3 0.375

-18 12 C 223.0 0.256 9 D 79.7 0.374 6 D 66.3 0.388

-12 12 C 148.0 0.315 9 D 161.0 0.301 6 D 174.0 0.313

-12 12 C 135.0 0.309 9 D 181.0 0.298 6 D 161.0 0.304

-12 12 C 142.0 0.312 9 D 176.0 0.304 6 D 140.0 0.298

-12 9 A 141.0 0.318 6 A 118.0 0.327 3 A 120.0 0.307

-12 9 A 144.0 0.330 6 A 134.0 0.311 3 A 118.0 0.319

-12 9 A 124.0 0.307 6 A 114.0 0.308 3 A 125.0 0.320

-18 9 A 222.0 0.249 6 A 242.0 0.266 3 A 231.0 0.259

-18 9 A 255.0 0.255 6 A 235.0 0.272 3 A 237.0 0.262

-18 9 A 243.0 0.260 6 A 268.0 0.271 3 A 234.0 0.265

-12 3 B 125.0 0.299 3 C 240.0 0.261 3 D 60.9 0.386

-12 3 B 118.0 0.319 3 C 240.0 0.270 3 D 63.1 0.368

-12 3 B 125.0 0.320 3 C 231.0 0.250 3 D 51.2 0.368

-18 3 B 235.0 0.255 3 C 115.0 0.329 3 D 147.0 0.328

-18 3 B 240.0 0.251 3 C 117.0 0.315 3 D 146.0 0.304

-18 3 B 237.0 0.264 3 C 125.0 0.328 3 D 132.0 0.309

-12 0 -- 102.0 0.335 0 -- 106.0 0.338 0 -- 108.0 0.334

-18 0 -- 214.0 0.272 0 -- 200.0 0.265 0 -- 196.0 0.268  
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Table 63. AAM-1 unaged DSR data 
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58 9 A 3.773 58 6 A 3.351 58 3 A 3.742

58 9 A 3.779 58 6 A 3.783 58 3 A 3.945

58 9 A 3.842 58 6 A 4.044 58 3 A 3.583

64 9 A 1.770 64 6 A 1.561 64 3 A 1.673

64 9 A 1.729 64 6 A 1.721 64 3 A 1.758

64 9 A 1.720 64 6 A 1.879 64 3 A 1.642

70 9 A 0.861 70 6 A 0.776 70 3 A 0.855

70 9 A 0.853 70 6 A 0.866 70 3 A 0.884

70 9 A 0.892 70 6 A 0.933 70 3 A 0.800

58 9 B 4.323 58 6 B 4.044 58 3 B 3.583

58 9 B 4.368 58 6 B 4.089 58 3 B 3.920

58 9 B 4.348 58 6 B 4.055 58 3 B 3.875

64 9 B 1.986 64 6 B 1.879 64 3 B 1.642

64 9 B 1.989 64 6 B 1.886 64 3 B 1.832

64 9 B 2.017 64 6 B 1.877 64 3 B 1.766

70 9 B 0.987 70 6 B 0.933 70 3 B 0.800

70 9 B 0.980 70 6 B 0.939 70 3 B 0.846

70 9 B 1.000 70 6 B 0.915 70 3 B 0.866

58 9 C 3.708 58 6 C 3.768 58 3 C 3.485

58 9 C 3.532 58 6 C 3.916 58 3 C 3.430

58 9 C 3.930 58 6 C 3.787 58 3 C 3.478

64 9 C 1.710 64 6 C 1.772 64 3 C 1.631

64 9 C 1.650 64 6 C 1.822 64 3 C 1.585

64 9 C 1.838 64 6 C 1.758 64 3 C 1.580

70 9 C 0.860 70 6 C 0.844 70 3 C 0.814

70 9 C 0.867 70 6 C 0.883 70 3 C 0.800

70 9 C 0.942 70 6 C 0.898 70 3 C 0.785

58 9 D 5.406 58 6 D 3.951 58 3 D 3.870

58 9 D 5.394 58 6 D 4.341 58 3 D 3.863

58 9 D 5.379 58 6 D 4.367 58 3 D 3.957

64 9 D 2.456 64 6 D 1.409 64 3 D 1.894

64 9 D 2.405 64 6 D 2.049 64 3 D 1.813

64 9 D 2.462 64 6 D 1.972 64 3 D 1.837

70 9 D 1.262 70 6 D 0.710 70 3 D 0.985

70 9 D 1.243 70 6 D 1.024 70 3 D 0.904

70 9 D 1.258 70 6 D 0.996 70 3 D 0.900

58 0 -- 3.376 64 0 -- 1.540 70 0 -- 0.766

58 0 -- 3.405 64 0 -- 1.568 70 0 -- 0.770

58 0 -- 3.418 64 0 -- 1.554 70 0 -- 0.771  
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Table 64. AAM-1 RTFO aged DSR data 
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58 9 A 7.911 58 6 A 7.755 58 3 A 7.408

58 9 A 7.662 58 6 A 7.461 58 3 A 7.096

58 9 A 7.745 58 6 A 7.206 58 3 A 7.521

64 9 A 3.419 64 6 A 3.337 64 3 A 3.200

64 9 A 3.462 64 6 A 3.337 64 3 A 3.118

64 9 A 3.376 64 6 A 3.947 64 3 A 3.315

70 9 A 1.639 70 6 A 1.792 70 3 A 1.489

70 9 A 1.632 70 6 A 1.815 70 3 A 1.458

70 9 A 1.599 70 6 A 1.833 70 3 A 1.465

58 9 B 8.438 58 6 B 7.858 58 3 B 7.718

58 9 B 7.797 58 6 B 6.916 58 3 B 7.241

58 9 B 7.792 58 6 B 7.339 58 3 B 7.994

64 9 B 3.563 64 6 B 3.326 64 3 B 3.285

64 9 B 3.112 64 6 B 2.962 64 3 B 3.006

64 9 B 3.303 64 6 B 3.155 64 3 B 3.030

70 9 B 1.649 70 6 B 1.536 70 3 B 1.542

70 9 B 1.436 70 6 B 1.386 70 3 B 1.415

70 9 B 1.499 70 6 B 1.491 70 3 B 1.419

58 9 C 9.054 58 6 C 8.152 58 3 C 8.011

58 9 C 9.032 58 6 C 8.136 58 3 C 7.837

58 9 C 9.196 58 6 C 7.593 58 3 C 7.245

64 9 C 3.938 64 6 C 3.407 64 3 C 3.450

64 9 C 3.994 64 6 C 3.453 64 3 C 2.967

64 9 C 3.947 64 6 C 3.250 64 3 C 3.366

70 9 C 1.772 70 6 C 1.536 70 3 C 1.638

70 9 C 1.815 70 6 C 1.836 70 3 C 1.387

70 9 C 1.833 70 6 C 1.491 70 3 C 1.465

58 9 D 9.987 58 6 D 8.543 58 3 D 7.989

58 9 D 9.727 58 6 D 8.559 58 3 D 7.864

58 9 D 8.833 58 6 D 7.877 58 3 D 7.869

64 9 D 4.538 64 6 D 3.786 64 3 D 3.479

64 9 D 4.237 64 6 D 3.710 64 3 D 3.549

64 9 D 3.764 64 6 D 3.522 64 3 D 3.496

70 9 D 2.191 70 6 D 1.786 70 3 D 1.608

70 9 D 2.071 70 6 D 1.790 70 3 D 1.631

70 9 D 1.829 70 6 D 1.673 70 3 D 1.653

58 0 -- 7.408 64 0 -- 3.154 70 0 -- 1.354

58 0 -- 7.127 64 0 -- 3.054 70 0 -- 1.354

58 0 -- 7.328 64 0 -- 3.246 70 0 -- 1.497  
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Table 65. AAM-1 PAV aged DSR data 
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22 9 A 5536 22 6 A 3102 22 3 A 3152

22 9 A 5235 22 6 A 2497 22 3 A 3366

22 9 A 5128 22 6 A 3264 22 3 A 2968

25 9 A 3001 25 6 A 2131 25 3 A 2181

25 9 A 3703 25 6 A 1719 25 3 A 2324

25 9 A 3685 25 6 A 2563 25 3 A 2051

28 9 A 2825 28 6 A 1437 28 3 A 1475

28 9 A 2561 28 6 A 1157 28 3 A 1572

28 9 A 2596 28 6 A 2218 28 3 A 1392

22 9 B 5279 22 6 B 5014 22 3 B 4069

22 9 B 5409 22 6 B 5021 22 3 B 4326

22 9 B 5709 22 6 B 4765 22 3 B 4447

25 9 B 3736 25 6 B 3630 25 3 B 2853

25 9 B 3911 25 6 B 3625 25 3 B 3053

25 9 B 4125 25 6 B 3372 25 3 B 3165

28 9 B 2570 28 6 B 2586 28 3 B 2280

28 9 B 2757 28 6 B 2556 28 3 B 2179

28 9 B 2905 28 6 B 2260 28 3 B 2245

22 9 C 4476 22 6 C 4910 22 3 C 4595

22 9 C 4621 22 6 C 5193 22 3 C 4268

22 9 C 4715 22 6 C 5002 22 3 C 4360

25 9 C 3117 25 6 C 3484 25 3 C 3280

25 9 C 3289 25 6 C 3734 25 3 C 3078

25 9 C 3395 25 6 C 3590 25 3 C 3151

28 9 C 2103 28 6 C 2834 28 3 C 2280

28 9 C 2236 28 6 C 2619 28 3 C 2179

28 9 C 2395 28 6 C 2508 28 3 C 2245

22 9 D 5967 22 6 D 5838 22 3 D 5484

22 9 D 6491 22 6 D 6422 22 3 D 5642

22 9 D 5382 22 6 D 6458 22 3 D 5512

25 9 D 4439 25 6 D 4375 25 3 D 4199

25 9 D 5041 25 6 D 4933 25 3 D 4267

25 9 D 3964 25 6 D 4955 25 3 D 3979

28 9 D 3231 28 6 D 3192 28 3 D 3172

28 9 D 3921 28 6 D 3796 28 3 D 3364

28 9 D 2895 28 6 D 3830 28 3 D 3029

22 0 -- 4037 25 0 -- 2910 28 0 -- 2067

22 0 -- 4117 25 0 -- 3055 28 0 -- 2255

22 0 -- 4274 25 0 -- 3101 28 0 -- 2213  
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Table 66. AAM-1 PAV aged BBR data 
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-6 9 A 107.0 0.276 -6 6 C 110.0 0.277

-6 9 A 108.0 0.283 -6 6 C 116.0 0.272

-6 9 A 112.0 0.282 -6 6 C 105.0 0.282

-3 9 A 50.4 0.341 -3 6 C 54.1 0.330

-3 9 A 52.9 0.332 -3 6 C 54.0 0.333

-3 9 A 50.5 0.333 -3 6 C 52.0 0.326

-6 9 B 142.0 0.276 -6 6 D 113.0 0.253

-6 9 B 112.0 0.277 -6 6 D 150.0 0.243

-6 9 B 108.0 0.294 -6 6 D 146.0 0.244

-3 9 B 68.0 0.321 -3 6 D 64.2 0.305

-3 9 B 55.6 0.322 -3 6 D 64.9 0.301

-3 9 B 59.5 0.334 -3 6 D 58.9 0.301

-6 9 C 101.0 0.287 -6 3 A 114.0 0.278

-6 9 C 107.0 0.294 -6 3 A 101.0 0.281

-6 9 C 100.0 0.276 -6 3 A 105.0 0.283

-3 9 C 52.1 0.337 -3 3 A 51.7 0.320

-3 9 C 55.0 0.335 -3 3 A 45.8 0.299

-3 9 C 51.2 0.343 -3 3 A 52.9 0.320

-6 9 D 171.0 0.231 -6 3 B 93.1 0.277

-6 9 D 167.0 0.240 -6 3 B 109.0 0.287

-6 9 D 161.0 0.223 -6 3 B 107.0 0.283

-3 9 D 72.3 0.299 -3 3 B 48.6 0.329

-3 9 D 71.5 0.288 -3 3 B 48.7 0.324

-3 9 D 71.3 0.296 -3 3 B 52.4 0.331

-6 6 A 77.4 0.305 -6 3 C 86.5 0.289

-6 6 A 81.6 0.307 -6 3 C 86.6 0.290

-6 6 A 87.2 0.289 -6 3 C 80.6 0.280

-3 6 A 44.0 0.347 -3 3 C 46.3 0.346

-3 6 A 44.0 0.347 -3 3 C 48.3 0.331

-3 6 A 46.4 0.335 -3 3 C 47.2 0.335

-6 6 B 100.0 0.283 -6 3 D 134.0 0.253

-6 6 B 94.3 0.278 -6 3 D 119.0 0.247

-6 6 B 108.0 0.283 -6 3 D 119.0 0.244

-3 6 B 53.0 0.333 -3 3 D 50.8 0.309

-3 6 B 45.9 0.337 -3 3 D 47.6 0.318

-3 6 B 50.7 0.324 -3 3 D 50.3 0.297

-3 0 -- 46.0 0.336 -6 0 -- 79.8 0.285

-3 0 -- 45.8 0.343 -6 0 -- 77.0 0.285

-3 0 -- 46.2 0.327 -6 0 -- 82.6 0.283  
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Table 67. LB Unaged DSR data 
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64 9 A 2.059 6 C 2.215 76 9 C 0.608 3 B 0.555

64 9 A 2.254 6 C 2.312 76 9 C 0.606 3 B 0.587

64 9 A 2.101 6 C 2.461 76 9 C 0.618 3 B 0.543

70 9 A 1.001 6 C 1.064 64 6 A 2.039 3 C 2.055

70 9 A 1.069 6 C 1.102 64 6 A 2.053 3 C 2.250

70 9 A 1.020 6 C 1.201 64 6 A 2.158 3 C 2.359

76 9 A 0.499 6 C 0.486 70 6 A 0.972 3 C 1.000

76 9 A 0.555 6 C 0.486 70 6 A 0.968 3 C 1.078

76 9 A 0.524 6 C 0.490 70 6 A 0.968 3 C 1.126

64 9 B 2.518 3 A 1.837 76 6 A 0.499 3 C 0.514

64 9 B 2.689 3 A 1.893 76 6 A 0.495 3 C 0.546

64 9 B 2.671 3 A 1.982 76 6 A 0.432 3 C 0.579

70 9 B 1.218 3 A 0.893 64 6 B 2.554 0 -- 1.628

70 9 B 1.286 3 A 0.913 64 6 B 2.620 0 -- 1.639

70 9 B 1.285 3 A 0.954 64 6 B 2.627 0 -- 1.681

76 9 B 0.621 3 A 0.452 70 6 B 1.222 0 -- 0.987

76 9 B 0.667 3 A 0.453 70 6 B 1.208 0 -- 1.023

76 9 B 0.658 3 A 0.435 70 6 B 1.258 0 -- 0.965

64 9 C 2.509 3 B 2.291 76 6 B 0.612 0 -- 0.405

64 9 C 2.473 3 B 2.430 76 6 B 0.606 0 -- 0.409

64 9 C 2.468 3 B 2.280 76 6 B 0.630 0 -- 0.421

70 9 C 1.197 3 B 1.099

70 9 C 1.203 3 B 1.165

70 9 C 1.205 3 B 1.081  
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Table 68. LB RTFO aged DSR data 
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64 9 A 6.125 6 C 6.023 76 9 C 1.360 3 B 1.372

64 9 A 6.131 6 C 5.997 76 9 C 1.352 3 B 1.221

64 9 A 5.941 6 C 6.321 76 9 C 1.487 3 B 1.372

70 9 A 2.764 6 C 2.643 64 6 A 5.984 3 C 5.994

70 9 A 2.846 6 C 2.791 64 6 A 5.914 3 C 5.784

70 9 A 2.533 6 C 2.794 64 6 A 5.877 3 C 5.987

76 9 A 1.305 6 C 1.318 70 6 A 2.665 3 C 2.612

76 9 A 1.431 6 C 1.305 70 6 A 2.741 3 C 2.546

76 9 A 1.291 6 C 1.215 70 6 A 2.546 3 C 2.564

64 9 B 6.531 3 A 5.867 76 6 A 1.190 3 C 1.221

64 9 B 6.233 3 A 5.867 76 6 A 1.217 3 C 1.231

64 9 B 6.459 3 A 5.608 76 6 A 1.162 3 C 1.195

70 9 B 2.931 3 A 2.632 64 6 B 6.223 0 -- 5.897

70 9 B 2.861 3 A 2.632 64 6 B 6.379 0 -- 5.713

70 9 B 2.988 3 A 2.587 64 6 B 6.553 0 -- 5.994

76 9 B 1.418 3 A 1.306 70 6 B 2.872 0 -- 2.665

76 9 B 1.397 3 A 1.306 70 6 B 2.930 0 -- 2.541

76 9 B 1.405 3 A 1.256 70 6 B 3.042 0 -- 2.549

64 9 C 6.127 3 B 5.995 76 6 B 1.374 0 -- 1.115

64 9 C 6.092 3 B 5.865 76 6 B 1.440 0 -- 1.096

64 9 C 6.637 3 B 6.263 76 6 B 1.471 0 -- 1.121

70 9 C 2.795 3 B 2.815

70 9 C 2.830 3 B 2.543

70 9 C 3.091 3 B 2.894  
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Table 69. LB PAV aged DSR data 
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22 9 A 6354 6 C 6512 28 9 C 3045 3 B 3188

22 9 A 6171 6 C 6439 28 9 C 3267 3 B 3200

22 9 A 6289 6 C 6520 28 9 C 3123 3 B 3047

25 9 A 4496 6 C 4216 22 6 A 6021 3 C 6355

25 9 A 4354 6 C 4635 22 6 A 6001 3 C 6411

25 9 A 4420 6 C 4542 22 6 A 6031 3 C 6287

28 9 A 3073 6 C 3145 25 6 A 4215 3 C 4321

28 9 A 3004 6 C 3211 25 6 A 4536 3 C 4400

28 9 A 3213 6 C 3192 25 6 A 4726 3 C 4296

22 9 B 6801 3 A 6038 28 6 A 2922 3 C 3012

22 9 B 6770 3 A 6158 28 6 A 3106 3 C 3101

22 9 B 6838 3 A 6194 28 6 A 3278 3 C 3192

25 9 B 4773 3 A 4216 22 6 B 6872 0 -- 6151

25 9 B 4804 3 A 4345 22 6 B 6872 0 -- 6026

25 9 B 4855 3 A 4311 22 6 B 6142 0 -- 5948

28 9 B 3307 3 A 2916 25 6 B 4875 0 -- 4165

28 9 B 3310 3 A 2993 25 6 B 4536 0 -- 4025

28 9 B 3359 3 A 3008 25 6 B 4536 0 -- 4116

22 9 C 6521 3 B 6656 28 6 B 3343 0 -- 2922

22 9 C 6411 3 B 6614 28 6 B 3106 0 -- 2846

22 9 C 6670 3 B 6303 28 6 B 3106 0 -- 2640

25 9 C 4366 3 B 4580

25 9 C 4701 3 B 4651

25 9 C 4623 3 B 4451  
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Table 70. LB PAV aged BBR data 
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-6 9 A 108.0 0.308 -6 6 C 113.0 0.312

-6 9 A 98.8 0.304 -6 6 C 100.0 0.349

-6 9 A 114.0 0.310 -6 6 C 111.0 0.334

-12 9 A 206.0 0.244 -12 6 C 257.0 0.225

-12 9 A 220.0 0.243 -12 6 C 228.0 0.229

-12 9 A 207.0 0.241 -12 6 C 236.0 0.229

-6 9 B 109.0 0.302 -6 3 A 93.7 0.308

-6 9 B 95.0 0.323 -6 3 A 99.7 0.335

-6 9 B 119.0 0.304 -6 3 A 91.0 0.312

-12 9 B 248.0 0.281 -12 3 A 181.0 0.271

-12 9 B 260.0 0.217 -12 3 A 176.0 0.272

-12 9 B 209.0 0.241 -12 3 A 187.0 0.269

-6 9 C 109.0 0.333 -6 3 B 113.0 0.323

-6 9 C 89.8 0.302 -6 3 B 106.0 0.315

-6 9 C 110.0 0.329 -6 3 B 109.0 0.308

-12 9 C 234.0 0.231 -12 3 B 207.0 0.269

-12 9 C 234.0 0.228 -12 3 B 203.0 0.250

-12 9 C 225.0 0.220 -12 3 B 173.0 0.282

-6 6 A 104.0 0.323 -6 3 C 105.0 0.327

-6 6 A 102.0 0.328 -6 3 C 103.0 0.327

-6 6 A 109.0 0.323 -6 3 C 98.9 0.322

-12 6 A 198.0 0.264 -12 3 C 257.0 0.216

-12 6 A 192.0 0.269 -12 3 C 217.0 0.218

-12 6 A 204.0 0.242 -12 3 C 223.0 0.242

-6 6 B 108.0 0.322 -6 0 -- 95.0 0.335

-6 6 B 106.0 0.329 -6 0 -- 96.1 0.332

-6 6 B 109.0 0.338 -6 0 -- 88.0 0.344

-12 6 B 226.0 0.232 -12 0 -- 185.0 0.281

-12 6 B 220.0 0.229 -12 0 -- 176.0 0.276

-12 6 B 221.0 0.218 -12 0 -- 170.0 0.264  
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Table 71. LPMB unaged DSR data 
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58 12 A 4.807 58 9 B 3.256 58 6 C 2.706

58 12 A 4.587 58 9 B 3.334 58 6 C 2.829

58 12 A 4.687 58 9 B 3.412 58 6 C 2.802

64 12 A 1.600 64 9 B 1.703 64 6 C 1.348

64 12 A 1.756 64 9 B 1.610 64 6 C 1.417

64 12 A 1.546 64 9 B 1.638 64 6 C 1.399

70 12 A 0.713 70 9 B 0.902 70 6 C 0.717

70 12 A 0.751 70 9 B 0.836 70 6 C 0.740

70 12 A 0.735 70 9 B 0.872 70 6 C 0.721

58 12 B 4.412 58 9 C 2.500 58 3 A 2.554

58 12 B 4.885 58 9 C 2.584 58 3 A 2.517

58 12 B 4.454 58 9 C 2.390 58 3 A 2.424

64 12 B 1.691 64 9 C 1.402 64 3 A 1.294

64 12 B 1.679 64 9 C 1.426 64 3 A 1.271

64 12 B 1.833 64 9 C 1.410 64 3 A 1.182

70 12 B 0.916 70 9 C 0.680 70 3 A 0.684

70 12 B 0.894 70 9 C 0.707 70 3 A 0.672

70 12 B 0.872 70 9 C 0.655 70 3 A 0.613

58 12 C 4.264 58 6 A 2.408 58 3 B 2.617

58 12 C 4.364 58 6 A 2.550 58 3 B 2.572

58 12 C 4.220 58 6 A 2.712 58 3 B 2.670

64 12 C 1.451 64 6 A 1.231 64 3 B 1.348

64 12 C 1.511 64 6 A 1.284 64 3 B 1.319

64 12 C 1.424 64 6 A 1.350 64 3 B 1.303

70 12 C 0.704 70 6 A 0.646 70 3 B 0.714

70 12 C 0.710 70 6 A 0.677 70 3 B 0.697

70 12 C 0.691 70 6 A 0.709 70 3 B 0.689

58 9 A 2.641 58 6 B 2.875 58 3 C 2.396

58 9 A 2.699 58 6 B 2.726 58 3 C 2.425

58 9 A 2.664 58 6 B 2.881 58 3 C 2.378

64 9 A 1.341 64 6 B 1.442 64 3 C 1.209

64 9 A 1.353 64 6 B 1.420 64 3 C 1.214

64 9 A 1.320 64 6 B 1.409 64 3 C 1.218

70 9 A 0.707 70 6 B 0.752 70 3 C 0.629

70 9 A 0.698 70 6 B 0.752 70 3 C 0.631

70 9 A 0.698 70 6 B 0.743 70 3 C 0.630

58 0 -- 2.451 64 0 -- 1.215 70 0 -- 0.603

58 0 -- 2.346 64 0 -- 1.194 70 0 -- 0.751

58 0 -- 2.402 64 0 -- 1.115 70 0 -- 0.645  
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Table 72. LPMB RTFO aged DSR data 
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58 12 A 12.131 58 9 B 8.368 58 6 C 7.488

58 12 A 11.664 58 9 B 8.608 58 6 C 7.524

58 12 A 11.651 58 9 B 7.987 58 6 C 7.484

64 12 A 6.027 64 9 B 4.032 64 6 C 3.627

64 12 A 5.832 64 9 B 4.168 64 6 C 3.710

64 12 A 5.580 64 9 B 3.951 64 6 C 3.617

70 12 A 2.812 70 9 B 1.993 70 6 C 1.846

70 12 A 2.676 70 9 B 2.102 70 6 C 1.841

70 12 A 2.685 70 9 B 1.993 70 6 C 1.813

58 12 B 12.754 58 9 C 8.451 58 3 A 7.681

58 12 B 12.952 58 9 C 8.541 58 3 A 7.628

58 12 B 12.812 58 9 C 8.230 58 3 A 7.716

64 12 B 6.477 64 9 C 3.985 64 3 A 2.990

64 12 B 6.479 64 9 C 4.231 64 3 A 3.757

64 12 B 6.405 64 9 C 4.021 64 3 A 2.645

70 12 B 2.990 70 9 C 2.003 70 3 A 1.543

70 12 B 2.910 70 9 C 2.159 70 3 A 1.312

70 12 B 2.927 70 9 C 1.834 70 3 A 1.112

58 12 C 11.212 58 6 A 7.657 58 3 B 7.382

58 12 C 10.986 58 6 A 6.120 58 3 B 7.365

58 12 C 10.784 58 6 A 6.149 58 3 B 7.127

64 12 C 5.607 64 6 A 3.180 64 3 B 3.552

64 12 C 5.484 64 6 A 2.955 64 3 B 3.554

64 12 C 5.334 64 6 A 2.985 64 3 B 3.462

70 12 C 2.606 70 6 A 1.611 70 3 B 1.645

70 12 C 2.474 70 6 A 1.451 70 3 B 1.233

70 12 C 2.460 70 6 A 1.494 70 3 B 1.560

58 9 A 7.818 58 6 B 7.571 58 3 C 8.592

58 9 A 6.746 58 6 B 7.856 58 3 C 7.074

58 9 A 6.965 58 6 B 7.700 58 3 C 7.536

64 9 A 3.305 64 6 B 4.126 64 3 C 3.364

64 9 A 3.297 64 6 B 3.978 64 3 C 3.473

64 9 A 3.360 64 6 B 3.717 64 3 C 3.648

70 9 A 1.680 70 6 B 1.816 70 3 C 1.645

70 9 A 1.672 70 6 B 1.451 70 3 C 1.497

70 9 A 1.714 70 6 B 1.883 70 3 C 1.461

58 0 -- 7.345 64 0 -- 2.951 70 0 -- 1.345

58 0 -- 7.561 64 0 -- 3.125 70 0 -- 1.465

58 0 -- 7.446 64 0 -- 3.215 70 0 -- 1.482  
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Table 73. LPMB PAV aged DSR data 
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19 12 A 9502 19 9 B 6382 19 6 C 5453

19 12 A 8523 19 9 B 6691 19 6 C 5528

19 12 A 8751 19 9 B 6611 19 6 C 6007

22 12 A 4912 22 9 B 4951 22 6 C 3940

22 12 A 4866 22 9 B 4994 22 6 C 3947

22 12 A 4938 22 9 B 5211 22 6 C 4290

25 12 A 3650 25 9 B 3541 25 6 C 2754

25 12 A 3450 25 9 B 3464 25 6 C 2742

25 12 A 3386 25 9 B 3661 25 6 C 3009

19 12 B 8954 19 9 C 5767 19 3 A 6198

19 12 B 8512 19 9 C 5606 19 3 A 5581

19 12 B 8233 19 9 C 5788 19 3 A 5876

22 12 B 5332 22 9 C 4067 22 3 A 3725

22 12 B 5267 22 9 C 3971 22 3 A 3884

22 12 B 5009 22 9 C 4199 22 3 A 4132

25 12 B 3929 25 9 C 2802 25 3 A 2876

25 12 B 3860 25 9 C 2744 25 3 A 2644

25 12 B 3656 25 9 C 2848 25 3 A 2834

19 12 C 7512 19 6 A 5720 19 3 B 7233

19 12 C 7964 19 6 A 6072 19 3 B 7122

19 12 C 8245 19 6 A 5484 19 3 B 7304

22 12 C 5058 22 6 A 4039 22 3 B 4822

22 12 C 4315 22 6 A 4315 22 3 B 4791

22 12 C 5153 22 6 A 3844 22 3 B 4912

25 12 C 3650 25 6 A 2771 25 3 B 3451

25 12 C 3449 25 6 A 2981 25 3 B 3352

25 12 C 3768 25 6 A 2638 25 3 B 3516

19 9 A 6051 19 6 B 7153 19 3 C 5547

19 9 A 5348 19 6 B 7031 19 3 C 5695

19 9 A 4818 19 6 B 7125 19 3 C 6102

22 9 A 4215 22 6 B 5027 22 3 C 4125

22 9 A 4561 22 6 B 4890 22 3 C 4025

22 9 A 3964 22 6 B 4988 22 3 C 3745

25 9 A 2891 25 6 B 3385 25 3 C 2850

25 9 A 3151 25 6 B 3352 25 3 C 2741

25 9 A 2971 25 6 B 3414 25 3 C 2994

19 0 -- 5751 22 0 -- 4098 25 0 -- 2934

19 0 -- 5760 22 0 -- 3733 25 0 -- 2946

19 0 -- 5706 22 0 -- 3824 25 0 -- 2901  
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Table 74. LPMB PAV aged BBR data 
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-6 12 A 78.3 0.352 -6 6 A 73.8 0.338

-6 12 A 73.9 0.339 -6 6 A 76.2 0.335

-6 12 A 101.0 0.343 -6 6 A 69.2 0.352

-12 12 A 106.0 0.263 -12 6 A 143.0 0.291

-12 12 A 133.0 0.270 -12 6 A 128.0 0.287

-12 12 A 204.0 0.282 -12 6 A 140.0 0.297

-6 12 B 71.3 0.337 -6 6 B 80.7 0.341

-6 12 B 84.4 0.347 -6 6 B 62.9 0.339

-6 12 B 76.2 0.337 -6 6 B 55.5 0.340

-12 12 B 117.0 0.260 -12 6 B 148.0 0.277

-12 12 B 179.0 0.260 -12 6 B 141.0 0.278

-12 12 B 151.0 0.265 -12 6 B 101.0 0.276

-6 12 C 81.5 0.336 -6 6 C 61.9 0.339

-6 12 C 95.3 0.334 -6 6 C 81.3 0.333

-6 12 C 80.0 0.344 -6 6 C 55.1 0.340

-12 12 C 143.0 0.256 -12 6 C 124.0 0.281

-12 12 C 214.0 0.253 -12 6 C 140.0 0.292

-12 12 C 130.0 0.262 -12 6 C 103.0 0.284

-6 9 A 95.2 0.340 -6 3 A 70.4 0.353

-6 9 A 78.2 0.353 -6 3 A 56.9 0.352

-6 9 A 59.0 0.344 -6 3 A 55.4 0.364

-12 9 A 193.0 0.301 -12 3 A 145.0 0.292

-12 9 A 133.0 0.296 -12 3 A 115.0 0.295

-12 9 A 115.0 0.285 -12 3 A 135.0 0.300

-6 9 B 85.0 0.331 -6 3 B 75.2 0.343

-6 9 B 71.6 0.348 -6 3 B 60.2 0.357

-6 9 B 72.1 0.334 -6 3 B 57.7 0.350

-12 9 B 138.0 0.265 -12 3 B 136.0 0.265

-12 9 B 138.0 0.285 -12 3 B 127.0 0.287

-12 9 B 146.0 0.275 -12 3 B 138.0 0.281

-6 9 C 83.6 0.344 -6 3 C 64.3 0.348

-6 9 C 79.6 0.336 -6 3 C 66.7 0.368

-6 9 C 72.1 0.351 -6 3 C 76.1 0.354

-12 9 C 186.0 0.295 -12 3 C 124.0 0.298

-12 9 C 127.0 0.297 -12 3 C 134.0 0.296

-12 9 C 141.0 0.298 -12 3 C 164.0 0.299

-6 0 -- 58.3 0.357 -12 0 -- 106.0 0.297

-6 0 -- 56.9 0.363 -12 0 -- 115.0 0.305

-6 0 -- 55.5 0.364 -12 0 -- 101.0 0.298  
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Table 75. AAD-1 critical temperatures 
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12 A 64.82 68.11 18.73 -24.00 6 B 65.31 68.35 18.94 -22.11

12 A 64.53 67.56 18.62 -23.97 6 B 63.81 68.60 18.36 -23.00

12 A 65.00 67.99 18.12 -24.05 6 B 65.40 68.96 18.65 -22.73

12 B 67.38 69.90 19.64 -23.73 6 C 63.20 66.13 17.96 -23.25

12 B 67.04 70.75 19.94 -23.26 6 C 63.55 65.93 18.23 -24.88

12 B 67.33 69.70 19.38 -22.22 6 C 63.37 66.43 18.05 -23.68

12 C 64.49 67.50 18.42 -23.38 6 D 65.15 65.28 19.59 -23.28

12 C 64.54 67.32 18.59 -23.38 6 D 65.71 65.26 19.47 -22.34

12 C 64.35 66.74 18.42 -23.29 6 D 65.77 65.25 19.50 -21.87

9 A 64.60 67.30 18.77 -23.57 3 A 63.59 65.78 17.24 -22.88

9 A 64.74 67.50 18.09 -24.40 3 A 63.63 65.69 17.26 -24.00

9 A 64.94 67.72 17.83 -22.89 3 A 63.75 65.95 17.31 -24.18

9 B 66.95 69.40 19.02 -23.64 3 B 64.45 67.61 17.67 -21.86

9 B 66.59 69.37 19.17 -22.78 3 B 65.25 67.80 18.47 -23.68

9 B 66.18 69.15 18.92 -23.83 3 B 64.63 67.22 18.26 -24.14

9 C 64.82 67.27 18.43 -23.70 3 C 62.68 66.06 18.25 -24.56

9 C 64.35 66.73 18.43 -23.79 3 C 62.83 65.18 17.81 -24.00

9 C 64.38 66.98 18.06 -23.69 3 C 62.95 65.59 17.28 -24.15

9 D 66.50 67.12 20.12 -22.11 3 D 64.68 65.09 18.72 -24.90

9 D 67.20 67.19 20.46 -21.87 3 D 64.87 67.64 19.30 -22.38

9 D 66.39 67.28 20.45 -22.34 3 D 64.97 67.78 19.65 -22.92

6 A 64.08 66.75 18.12 -24.66 0 -- 62.18 65.66 17.23 -25.33

6 A 64.08 66.78 17.98 -23.69 0 -- 62.37 65.21 17.67 -25.12

6 A 65.50 67.26 17.73 -23.30 0 -- 62.27 65.27 17.07 -25.09  
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Table 76. AAM-1 critical temperatures 
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9 A 68.73 67.62 22.62 -14.89

9 A 68.61 67.63 22.42 -14.96

9 A 68.84 67.46 22.25 -14.94

9 B 69.78 67.76 22.49 -14.40

9 B 69.73 66.80 22.74 -14.47

9 B 69.90 67.12 23.22 -15.55

9 C 68.64 68.37 21.16 -15.22

9 C 68.60 68.53 21.42 -15.56

9 C 69.36 68.54 21.51 -14.93

9 D 71.73 69.88 23.77 -12.96

9 D 71.55 69.37 25.10 -12.25

9 D 71.73 68.42 22.73 -12.84

6 A 67.83 67.99 18.30 -16.36

6 A 68.69 68.06 16.62 -16.53

6 A 69.34 68.62 15.33 -15.28

6 B 69.34 67.25 22.05 -14.98

6 B 69.38 66.44 22.07 -14.88

6 B 69.21 66.95 21.69 -14.76

6 C 68.62 67.32 21.62 -14.70

6 C 68.94 68.21 22.37 -14.62

6 C 68.96 67.05 22.04 -14.77

6 D 67.16 68.32 23.59 -13.29

6 D 70.11 68.27 24.85 -13.05

6 D 69.80 67.80 24.92 -13.05

3 A 68.53 66.99 18.39 -14.43

3 A 68.84 66.80 18.91 -12.83

3 A 68.13 67.01 17.89 -14.62

3 B 68.13 67.23 19.73 -14.67

3 B 68.70 66.60 20.72 -14.95

3 B 68.74 66.70 20.98 -14.94

3 C 68.21 67.64 21.32 -15.42

3 C 68.03 66.55 20.62 -15.27

3 C 67.92 67.03 20.78 -14.91

3 D 69.78 67.58 23.04 -13.48

3 D 69.08 67.69 23.32 -13.76

3 D 69.07 67.72 22.89 -12.83

0 -- 67.72 66.56 20.11 -15.12

0 -- 67.80 66.45 20.07 -15.22

0 -- 67.78 67.04 20.60 -14.84  
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Table 77. LPMB critical temperatures 
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12 A 67.54 72.10 22.62 -19.51

12 A 67.97 71.70 22.29 -19.39

12 A 67.56 71.62 22.33 -20.23

12 B 68.81 72.66 22.96 -18.88

12 B 68.59 72.38 22.81 -19.24

12 B 68.80 72.43 22.45 -19.08

12 C 67.22 71.49 22.29 -18.70

12 C 67.37 71.07 21.88 -18.52

12 C 67.10 71.00 22.62 -19.22

9 A 66.79 67.64 20.57 -22.15

9 A 66.77 67.59 20.25 -21.58

9 A 66.68 67.78 18.77 -20.47

9 B 69.02 69.14 21.63 -18.82

9 B 68.34 69.55 21.77 -20.57

9 B 68.63 69.12 22.03 -19.46

9 C 66.66 69.13 20.22 -21.39

9 C 66.95 69.79 20.00 -21.54

9 C 66.42 68.63 20.34 -21.77

6 A 65.97 67.33 20.15 -20.85

6 A 66.40 66.51 20.68 -20.38

6 A 66.84 66.67 19.79 -21.67

6 B 67.39 68.65 21.93 -19.84

6 B 67.32 67.39 21.78 -19.84

6 B 67.26 68.60 21.92 -19.75

6 C 66.89 68.42 19.81 -20.03

6 C 67.24 68.47 19.90 -20.83

6 C 67.06 68.31 20.62 -20.29

3 A 66.48 66.97 20.41 -21.21

3 A 66.32 66.83 19.91 -21.47

3 A 65.64 65.56 20.36 -22.00

3 B 66.84 67.73 21.90 -19.31

3 B 66.64 66.45 21.76 -20.89

3 B 66.58 67.38 22.02 -20.35

3 C 65.79 67.60 20.05 -21.76

3 C 65.84 67.19 20.12 -21.67

3 C 65.81 67.22 20.38 -21.89

0 -- 65.67 66.37 20.24 -21.70

0 -- 66.58 66.87 20.03 -22.52

0 -- 65.65 66.98 20.01 -21.82  
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Table 78. LB critical temperatures 
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9 A 70.08 71.89 24.03 -16.75

9 A 70.83 72.34 23.79 -16.39

9 A 70.33 71.57 24.00 -16.87

9 B 71.84 72.45 24.58 -16.57

9 B 72.39 72.27 24.58 -17.30

9 B 72.33 72.45 24.68 -16.38

9 C 71.70 72.08 24.04 -17.94

9 C 71.67 72.08 24.29 -16.16

9 C 71.76 72.81 24.31 -17.60

6 A 69.97 71.43 23.56 -18.34

6 A 69.95 71.56 23.82 -18.85

6 A 69.74 71.21 24.06 -17.70

6 B 71.81 72.21 24.70 -17.47

6 B 71.78 72.49 24.36 -17.74

6 B 72.06 72.71 23.93 -17.90

6 C 70.36 71.78 24.00 -16.83

6 C 70.55 71.88 24.24 -18.45

6 C 70.92 71.70 24.22 -17.94

3 A 69.15 71.70 23.57 -17.30

3 A 69.31 71.70 23.77 -19.33

3 A 69.49 71.44 23.78 -17.67

3 B 70.94 72.11 24.32 -18.56

3 B 71.43 71.37 24.34 -17.38

3 B 70.81 72.23 23.96 -17.85

3 C 70.16 71.47 23.89 -17.46

3 C 70.79 71.37 24.02 -17.49

3 C 71.22 71.35 23.91 -17.65

0 -- 68.95 71.20 23.62 -19.89

0 -- 68.91 70.97 23.42 -19.43

0 -- 68.79 71.13 23.38 -19.30  
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